You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_infer/test_hybrid_chatglm2.py

111 lines
3.8 KiB

import pytest
import torch
import torch.distributed as dist
from packaging import version
import colossalai
from colossalai.inference import CaiInferEngine, ChatGLM2InferPolicy
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
def data_gen():
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
inputs = data_gen()
for k, v in inputs.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 16
inputs[k] = v.to("cuda").repeat(*new_shape)
def pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
chatglm_config = ChatGLMConfig(
num_layers=2,
vocab_size=20000,
use_cache=True,
multi_query_attention=True,
multi_query_group_num=2,
num_attention_heads=8,
hidden_size=1024,
)
model = ChatGLMForConditionalGeneration(chatglm_config)
engine = CaiInferEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
model_policy=ChatGLM2InferPolicy(),
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
output = engine.inference(inputs)
if dist.get_rank() == 0:
assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}"
@parameterize("tp_size", [1])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
def check_pipeline_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_pipeline_inference_test()
def check_tp_pipeline_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_pipeline_inference_test()
def check_tp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_inference_test()
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_pipeline_inference():
spawn(check_pipeline_inference, nprocs=2)
spawn(check_tp_pipeline_inference, nprocs=4)
spawn(check_tp_inference, nprocs=2)
if __name__ == "__main__":
test_pipeline_inference()