mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
5.0 KiB
123 lines
5.0 KiB
import argparse |
|
import logging |
|
import os |
|
import time |
|
|
|
import torch |
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig |
|
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear |
|
from transformers import AutoTokenizer, BloomForCausalLM, BloomTokenizerFast, LlamaForCausalLM, LlamaTokenizer |
|
|
|
import colossalai |
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.shardformer import ShardConfig |
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn |
|
|
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' |
|
|
|
|
|
def print_perf_stats(latency_set, config, bs, warmup=3): |
|
# trim warmup queries |
|
latency_set = list(latency_set) |
|
latency_set = latency_set[warmup:] |
|
count = len(latency_set) |
|
|
|
if count > 0: |
|
latency_set.sort() |
|
avg = sum(latency_set) / count |
|
num_layers = getattr(config, "num_layers", config.num_hidden_layers) |
|
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12 |
|
num_bytes = 2 # float16 |
|
|
|
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000)) |
|
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9)) |
|
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12)) |
|
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs)) |
|
|
|
|
|
def bench_bloom(args): |
|
|
|
pretrained_model_dir = args.path |
|
quantized_model_dir = args.quantized_path |
|
max_batch_size = args.batch_size |
|
max_input_len = args.input_len |
|
max_output_len = args.output_len |
|
|
|
tokenizer = BloomTokenizerFast.from_pretrained(pretrained_model_dir) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
# load quantized model to the first GPU |
|
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, |
|
device=torch.cuda.current_device(), |
|
inject_fused_attention=False) |
|
|
|
model = model.half() |
|
|
|
model_config = model.config |
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True) |
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len) |
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False) |
|
|
|
input_tokens = { |
|
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'), |
|
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda') |
|
} |
|
|
|
# init TPInferEngine and shard the original model |
|
# To benchmark torch original, comment out the line of optimizing model |
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, |
|
inference_only=True, |
|
inference_gptq=True) |
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len) |
|
|
|
# prepare data for generation |
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False) |
|
input_tokens = { |
|
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)), |
|
"attention_mask": torch.ones((max_batch_size, max_input_len)) |
|
} |
|
for t in input_tokens: |
|
if torch.is_tensor(input_tokens[t]): |
|
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device()) |
|
# print(f" input_tokens[{t}].shape: {input_tokens[t].shape}") |
|
|
|
iters = 10 |
|
times = [] |
|
for i in range(iters): |
|
torch.cuda.synchronize() |
|
start = time.time() |
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs) |
|
torch.cuda.synchronize() |
|
end = time.time() |
|
out_len = outputs.shape[1] |
|
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s") |
|
times.append((end - start) / (out_len - max_input_len)) |
|
|
|
print_perf_stats(times, model_config, max_batch_size) |
|
|
|
|
|
def check_bloom(rank, world_size, port, args): |
|
disable_existing_loggers() |
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
bench_bloom(args) |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_bloom(args): |
|
spawn(check_bloom, args.tp_size, args=args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-p', '--path', type=str, help='Model path', required=True) |
|
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True) |
|
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size') |
|
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size') |
|
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length') |
|
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length') |
|
|
|
args = parser.parse_args() |
|
|
|
test_bloom(args)
|
|
|