Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

100 lines
3.8 KiB

import argparse
import os
import time
import torch
from transformers import BloomForCausalLM, BloomTokenizerFast
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def print_perf_stats(latency_set, config, bs, warmup=3):
# trim warmup queries
latency_set = list(latency_set)
latency_set = latency_set[warmup:]
count = len(latency_set)
if count > 0:
latency_set.sort()
avg = sum(latency_set) / count
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
num_bytes = 2 # float16
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
def bench_bloom(args):
model_path = args.path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = BloomTokenizerFast.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token
model = BloomForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
# init TPInferEngine and shard the original model
# To benchmark torch original, comment out the line of optimizing model
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
# prepare data for generation
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
"attention_mask": torch.ones((max_batch_size, max_input_len)),
}
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
print(f" input_tokens[{t}].shape: {input_tokens[t].shape}")
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
times.append((end - start) / (out_len - max_input_len))
print_perf_stats(times, model.config, max_batch_size)
def check_bloom(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
bench_bloom(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_bloom(args):
spawn(check_bloom, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
args = parser.parse_args()
test_bloom(args)