mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
702 lines
27 KiB
702 lines
27 KiB
import argparse |
|
import hashlib |
|
import math |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from huggingface_hub import HfFolder, Repository, create_repo, whoami |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin |
|
from colossalai.logging import disable_existing_loggers, get_dist_logger |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.utils import get_current_device |
|
|
|
disable_existing_loggers() |
|
logger = get_dist_logger() |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=args.revision, |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
return RobertaSeriesModelWithTransformation |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--externel_unet_path", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Path to the externel unet model.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default="a photo of sks dog", |
|
required=False, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--offload_optim_frac", |
|
type=float, |
|
default=1.0, |
|
help="Fraction of optimizer states to be offloaded. Valid when using colossalai as dist plan.", |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images.") |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument("--test_run", default=False, help="Whether to use a smaller dataset for test run.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"-p", |
|
"--plugin", |
|
type=str, |
|
default="torch_ddp", |
|
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero"], |
|
help="plugin to use", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.with_prior_preservation: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
else: |
|
if args.class_data_dir is not None: |
|
logger.warning("You need not use --class_data_dir without --with_prior_preservation.") |
|
if args.class_prompt is not None: |
|
logger.warning("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
return args |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
tokenizer, |
|
class_data_root=None, |
|
class_prompt=None, |
|
size=512, |
|
center_crop=False, |
|
test=False, |
|
): |
|
self.size = size |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir()) |
|
if test: |
|
self.instance_images_path = self.instance_images_path[:10] |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.instance_prompt = instance_prompt |
|
self._length = self.num_instance_images |
|
|
|
if class_data_root is not None: |
|
self.class_data_root = Path(class_data_root) |
|
self.class_data_root.mkdir(parents=True, exist_ok=True) |
|
self.class_images_path = list(self.class_data_root.iterdir()) |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
self.class_prompt = class_prompt |
|
else: |
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
self.instance_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
if self.class_data_root: |
|
class_image = Image.open(self.class_images_path[index % self.num_class_images]) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
self.class_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def main(args): |
|
if args.seed is None: |
|
colossalai.launch_from_torch(config={}) |
|
else: |
|
colossalai.launch_from_torch(config={}, seed=args.seed) |
|
|
|
local_rank = dist.get_rank() |
|
world_size = dist.get_world_size() |
|
|
|
if args.with_prior_preservation: |
|
class_images_dir = Path(args.class_data_dir) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32 |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
revision=args.revision, |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
pipeline.to(get_current_device()) |
|
|
|
for example in tqdm( |
|
sample_dataloader, |
|
desc="Generating class images", |
|
disable=not local_rank == 0, |
|
): |
|
images = pipeline(example["prompt"]).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = hashlib.sha256(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
|
|
# Handle the repository creation |
|
if local_rank == 0: |
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=args.hub_token) |
|
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) |
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "step_*" not in gitignore: |
|
gitignore.write("step_*\n") |
|
if "epoch_*" not in gitignore: |
|
gitignore.write("epoch_*\n") |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
# Load the tokenizer |
|
if args.tokenizer_name: |
|
logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0]) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer_name, |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
elif args.pretrained_model_name_or_path: |
|
logger.info("Loading tokenizer from pretrained model", ranks=[0]) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
# import correct text encoder class |
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path) |
|
|
|
# Load models and create wrapper for stable diffusion |
|
|
|
logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0]) |
|
|
|
text_encoder = text_encoder_cls.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=args.revision, |
|
) |
|
|
|
logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0]) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="vae", |
|
revision=args.revision, |
|
) |
|
|
|
if args.externel_unet_path is None: |
|
logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False |
|
) |
|
else: |
|
logger.info(f"Loading UNet2DConditionModel from {args.externel_unet_path}", ranks=[0]) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.externel_unet_path, revision=args.revision, low_cpu_mem_usage=False |
|
) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
if args.scale_lr: |
|
args.learning_rate = args.learning_rate * args.train_batch_size * world_size |
|
|
|
# Use Booster API to use Gemini/Zero with ColossalAI |
|
|
|
booster_kwargs = {} |
|
if args.plugin == "torch_ddp_fp16": |
|
booster_kwargs["mixed_precision"] = "fp16" |
|
if args.plugin.startswith("torch_ddp"): |
|
plugin = TorchDDPPlugin() |
|
elif args.plugin == "gemini": |
|
plugin = GeminiPlugin(offload_optim_frac=args.offload_optim_frac, strict_ddp_mode=True, initial_scale=2**5) |
|
elif args.plugin == "low_level_zero": |
|
plugin = LowLevelZeroPlugin(initial_scale=2**5) |
|
|
|
booster = Booster(plugin=plugin, **booster_kwargs) |
|
|
|
# config optimizer for colossalai zero |
|
optimizer = HybridAdam( |
|
unet.parameters(), lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm |
|
) |
|
|
|
# load noise_scheduler |
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
# prepare dataset |
|
logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0]) |
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
class_prompt=args.class_prompt, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
test=args.test_run, |
|
) |
|
|
|
def collate_fn(examples): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
|
|
# Concat class and instance examples for prior preservation. |
|
# We do this to avoid doing two forward passes. |
|
if args.with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = tokenizer.pad( |
|
{"input_ids": input_ids}, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
} |
|
return batch |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1 |
|
) |
|
|
|
# Scheduler and math around the number of training steps. |
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=args.max_train_steps, |
|
) |
|
weight_dtype = torch.float32 |
|
if args.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif args.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
# Move text_encode and vae to gpu. |
|
# For mixed precision training we cast the text_encoder and vae weights to half-precision |
|
# as these models are only used for inference, keeping weights in full precision is not required. |
|
vae.to(get_current_device(), dtype=weight_dtype) |
|
text_encoder.to(get_current_device(), dtype=weight_dtype) |
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed. |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
# Afterwards we recalculate our number of training epochs |
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
unet, optimizer, _, _, lr_scheduler = booster.boost(unet, optimizer, lr_scheduler=lr_scheduler) |
|
|
|
# Train! |
|
total_batch_size = args.train_batch_size * world_size |
|
|
|
logger.info("***** Running training *****", ranks=[0]) |
|
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0]) |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}", ranks=[0]) |
|
logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0]) |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}", ranks=[0]) |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0]) |
|
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0]) |
|
|
|
# Only show the progress bar once on each machine. |
|
progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0) |
|
progress_bar.set_description("Steps") |
|
global_step = 0 |
|
|
|
torch.cuda.synchronize() |
|
for epoch in range(args.num_train_epochs): |
|
unet.train() |
|
for step, batch in enumerate(train_dataloader): |
|
torch.cuda.reset_peak_memory_stats() |
|
# Move batch to gpu |
|
for key, value in batch.items(): |
|
batch[key] = value.to(get_current_device(), non_blocking=True) |
|
|
|
# Convert images to latent space |
|
optimizer.zero_grad() |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
|
|
# Sample noise that we'll add to the latents |
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
# Sample a random timestep for each image |
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep |
|
# (this is the forward diffusion process) |
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
# Get the text embedding for conditioning |
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
# Predict the noise residual |
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
# Get the target for loss depending on the prediction type |
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
# Chunk the noise and model_pred into two parts and compute the loss on each part separately. |
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) |
|
target, target_prior = torch.chunk(target, 2, dim=0) |
|
|
|
# Compute instance loss |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() |
|
|
|
# Compute prior loss |
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") |
|
|
|
# Add the prior loss to the instance loss. |
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
optimizer.backward(loss) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0]) |
|
# Checks if the accelerator has performed an optimization step behind the scenes |
|
progress_bar.update(1) |
|
global_step += 1 |
|
logs = { |
|
"loss": loss.detach().item(), |
|
"lr": optimizer.param_groups[0]["lr"], |
|
} # lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step % args.save_steps == 0: |
|
torch.cuda.synchronize() |
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
booster.save_model(unet, os.path.join(save_path, "diffusion_pytorch_model.bin")) |
|
if local_rank == 0: |
|
if not os.path.exists(os.path.join(save_path, "config.json")): |
|
shutil.copy(os.path.join(args.pretrained_model_name_or_path, "unet/config.json"), save_path) |
|
logger.info(f"Saving model checkpoint to {save_path}", ranks=[0]) |
|
if global_step >= args.max_train_steps: |
|
break |
|
torch.cuda.synchronize() |
|
|
|
booster.save_model(unet, os.path.join(args.output_dir, "diffusion_pytorch_model.bin")) |
|
logger.info(f"Saving model checkpoint to {args.output_dir} on rank {local_rank}") |
|
if local_rank == 0: |
|
if not os.path.exists(os.path.join(args.output_dir, "config.json")): |
|
shutil.copy(os.path.join(args.pretrained_model_name_or_path, "unet/config.json"), args.output_dir) |
|
if args.push_to_hub: |
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args)
|
|
|