ColossalAI/colossalai/fx/profiler/experimental/profiler_module/convolution.py

158 lines
6.5 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import math
import operator
from functools import reduce
from typing import Tuple
import torch
from ..registry import meta_profiler_module
@meta_profiler_module.register(torch.nn.Conv1d)
def torch_nn_conv1d(self: torch.nn.Conv1d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
c_in, l_in = input.shape[-2:]
c_out = self.out_channels
l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
result_shape = input.shape[:-2] + (
c_out,
l_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(operator.mul, result_shape)
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += num_elem
return flops, macs
@meta_profiler_module.register(torch.nn.Conv2d)
def torch_nn_conv2d(self: torch.nn.Conv2d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
c_in, h_in, w_in = input.shape[-3:]
c_out = self.out_channels
h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
result_shape = input.shape[:-3] + (
c_out,
h_out,
w_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(operator.mul, result_shape)
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += num_elem
return flops, macs
@meta_profiler_module.register(torch.nn.Conv3d)
def torch_nn_conv3d(self: torch.nn.Conv3d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
c_in, d_in, h_in, w_in = input.shape[-4:]
c_out = self.out_channels
d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] *
(self.kernel_size[2] - 1) - 1) / self.stride[2] + 1)
result_shape = input.shape[:-4] + (
c_out,
d_out,
h_out,
w_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(operator.mul, result_shape)
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += num_elem
return flops, macs
@meta_profiler_module.register(torch.nn.ConvTranspose1d)
def torch_nn_convtranspose1d(self: torch.nn.ConvTranspose1d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
c_in, l_in = input.shape[-2:]
c_out = self.out_channels
l_out = math.floor((l_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
result_shape = input.shape[:-2] + (
c_out,
l_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(
operator.mul, input.shape
) # see https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L604
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += reduce(operator.mul, result_shape)
return flops, macs
@meta_profiler_module.register(torch.nn.ConvTranspose2d)
def torch_nn_convtranspose2d(self: torch.nn.ConvTranspose2d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
c_in, h_in, w_in = input.shape[-3:]
c_out = self.out_channels
h_out = math.floor((h_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
w_out = math.floor((w_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
result_shape = input.shape[:-3] + (
c_out,
h_out,
w_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(operator.mul, input.shape)
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += reduce(operator.mul, result_shape)
return flops, macs
@meta_profiler_module.register(torch.nn.ConvTranspose3d)
def torch_nn_convtranspose3d(self: torch.nn.ConvTranspose3d, input: torch.Tensor) -> Tuple[int, int]:
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose3d.html
c_in, d_in, h_in, w_in = input.shape[-4:]
c_out = self.out_channels
d_out = math.floor((d_in - 1) * self.stride[0] - 2 * self.padding[0] + self.dilation[0] *
(self.kernel_size[0] - 1) + self.output_padding[0] + 1)
h_out = math.floor((h_in - 1) * self.stride[1] - 2 * self.padding[1] + self.dilation[1] *
(self.kernel_size[1] - 1) + self.output_padding[1] + 1)
w_out = math.floor((w_in - 1) * self.stride[2] - 2 * self.padding[2] + self.dilation[2] *
(self.kernel_size[2] - 1) + self.output_padding[2] + 1)
result_shape = input.shape[:-4] + (
c_out,
d_out,
h_out,
w_out,
)
macs_per_elem = reduce(operator.mul, self.kernel_size) * c_in // self.groups
num_elem = reduce(operator.mul, input.shape)
macs = macs_per_elem * num_elem
flops = 2 * macs
if self.bias is not None:
flops += reduce(operator.mul, result_shape)
return flops, macs