ColossalAI/examples/tutorial/sequence_parallel/lr_scheduler/annealing_lr.py

149 lines
5.1 KiB
Python

# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Learning rate decay functions."""
import math
class AnnealingLR(object):
"""Anneals the learning rate."""
def __init__(
self,
optimizer,
max_lr,
min_lr,
warmup_steps,
decay_steps,
decay_style,
use_checkpoint_lr_scheduler=True,
override_lr_scheduler=False,
):
# Class values.
self.optimizer = optimizer
self.max_lr = float(max_lr)
self.min_lr = min_lr
assert self.min_lr >= 0.0
assert self.max_lr >= self.min_lr
self.warmup_steps = warmup_steps
self.num_steps = 0
self.decay_steps = decay_steps
assert self.decay_steps > 0
assert self.warmup_steps < self.decay_steps
self.decay_style = decay_style
self.override_lr_scheduler = override_lr_scheduler
self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
if self.override_lr_scheduler:
assert not self.use_checkpoint_lr_scheduler, "both override and " "use-checkpoint are set."
# Set the learning rate
self.step(0)
def get_lr(self):
"""Learning rate decay functions from:
https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
# Use linear warmup for the initial part.
if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
return self.max_lr * float(self.num_steps) / float(self.warmup_steps)
# If the learning rate is constant, just return the initial value.
if self.decay_style == "constant":
return self.max_lr
# For any steps larger than `self.decay_steps`, use `self.min_lr`.
if self.num_steps > self.decay_steps:
return self.min_lr
# If we are done with the warmup period, use the decay style.
num_steps_ = self.num_steps - self.warmup_steps
decay_steps_ = self.decay_steps - self.warmup_steps
decay_ratio = float(num_steps_) / float(decay_steps_)
assert decay_ratio >= 0.0
assert decay_ratio <= 1.0
delta_lr = self.max_lr - self.min_lr
if self.decay_style == "linear":
coeff = 1.0 - decay_ratio
elif self.decay_style == "cosine":
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
else:
raise Exception("{} decay style is not supported.".format(self.decay_style))
return self.min_lr + coeff * delta_lr
def step(self, increment=1):
"""Set lr for all parameters groups."""
self.num_steps += increment
new_lr = self.get_lr()
for group in self.optimizer.param_groups:
group["lr"] = new_lr
def state_dict(self):
state_dict = {
"max_lr": self.max_lr,
"warmup_steps": self.warmup_steps,
"num_steps": self.num_steps,
"decay_style": self.decay_style,
"decay_steps": self.decay_steps,
"min_lr": self.min_lr,
}
return state_dict
def _check_and_set(self, cls_value, sd_value, name):
"""Auxiliary function for checking the values in the checkpoint and
setting them."""
if self.override_lr_scheduler:
return cls_value
if not self.use_checkpoint_lr_scheduler:
assert cls_value == sd_value, (
f"AnnealingLR: class input value {cls_value} and checkpoint" f"value {sd_value} for {name} do not match"
)
return sd_value
def load_state_dict(self, sd):
if "start_lr" in sd:
max_lr_ = sd["start_lr"]
else:
max_lr_ = sd["max_lr"]
self.max_lr = self._check_and_set(self.max_lr, max_lr_, "learning rate")
self.min_lr = self._check_and_set(self.min_lr, sd["min_lr"], "minimum learning rate")
if "warmup_iter" in sd:
warmup_steps_ = sd["warmup_iter"]
else:
warmup_steps_ = sd["warmup_steps"]
self.warmup_steps = self._check_and_set(self.warmup_steps, warmup_steps_, "warmup iterations")
if "end_iter" in sd:
decay_steps_ = sd["end_iter"]
else:
decay_steps_ = sd["decay_steps"]
self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_, "total number of iterations")
self.decay_style = self._check_and_set(self.decay_style, sd["decay_style"], "decay style")
if "num_iters" in sd:
num_steps = sd["num_iters"]
else:
num_steps = sd["num_steps"]
self.step(increment=num_steps)