mirror of https://github.com/hpcaitech/ColossalAI
173 lines
5.2 KiB
Python
173 lines
5.2 KiB
Python
import argparse
|
|
|
|
import torch
|
|
from benchmark_utils import benchmark
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from transformers import (
|
|
AlbertConfig,
|
|
AlbertForSequenceClassification,
|
|
BertConfig,
|
|
BertForSequenceClassification,
|
|
get_linear_schedule_with_warmup,
|
|
)
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
# ==============================
|
|
# Prepare Hyperparameters
|
|
# ==============================
|
|
NUM_EPOCHS = 3
|
|
BATCH_SIZE = 32
|
|
LEARNING_RATE = 2.4e-5
|
|
WEIGHT_DECAY = 0.01
|
|
WARMUP_FRACTION = 0.1
|
|
SEQ_LEN = 512
|
|
VOCAB_SIZE = 1000
|
|
NUM_LABELS = 10
|
|
DATASET_LEN = 1000
|
|
|
|
|
|
class RandintDataset(Dataset):
|
|
def __init__(self, dataset_length: int, sequence_length: int, vocab_size: int, n_class: int):
|
|
self._sequence_length = sequence_length
|
|
self._vocab_size = vocab_size
|
|
self._n_class = n_class
|
|
self._dataset_length = dataset_length
|
|
self._datas = torch.randint(
|
|
low=0,
|
|
high=self._vocab_size,
|
|
size=(
|
|
self._dataset_length,
|
|
self._sequence_length,
|
|
),
|
|
dtype=torch.long,
|
|
)
|
|
self._labels = torch.randint(low=0, high=self._n_class, size=(self._dataset_length, 1), dtype=torch.long)
|
|
|
|
def __len__(self):
|
|
return self._dataset_length
|
|
|
|
def __getitem__(self, idx):
|
|
return self._datas[idx], self._labels[idx]
|
|
|
|
|
|
def main():
|
|
# ==============================
|
|
# Parse Arguments
|
|
# ==============================
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
|
|
parser.add_argument(
|
|
"-p",
|
|
"--plugin",
|
|
type=str,
|
|
default="torch_ddp",
|
|
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero"],
|
|
help="plugin to use",
|
|
)
|
|
parser.add_argument(
|
|
"--model_type",
|
|
type=str,
|
|
default="bert",
|
|
help="bert or albert",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# ==============================
|
|
# Launch Distributed Environment
|
|
# ==============================
|
|
colossalai.launch_from_torch(config={}, seed=42)
|
|
coordinator = DistCoordinator()
|
|
|
|
# local_batch_size = BATCH_SIZE // coordinator.world_size
|
|
lr = LEARNING_RATE * coordinator.world_size
|
|
|
|
# ==============================
|
|
# Instantiate Plugin and Booster
|
|
# ==============================
|
|
booster_kwargs = {}
|
|
if args.plugin == "torch_ddp_fp16":
|
|
booster_kwargs["mixed_precision"] = "fp16"
|
|
if args.plugin.startswith("torch_ddp"):
|
|
plugin = TorchDDPPlugin()
|
|
elif args.plugin == "gemini":
|
|
plugin = GeminiPlugin(placement_policy="cuda", strict_ddp_mode=True, initial_scale=2**5)
|
|
elif args.plugin == "low_level_zero":
|
|
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
|
|
|
booster = Booster(plugin=plugin, **booster_kwargs)
|
|
|
|
# ==============================
|
|
# Prepare Dataloader
|
|
# ==============================
|
|
|
|
train_dataset = RandintDataset(
|
|
dataset_length=DATASET_LEN, sequence_length=SEQ_LEN, vocab_size=VOCAB_SIZE, n_class=NUM_LABELS
|
|
)
|
|
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE)
|
|
|
|
# ====================================
|
|
# Prepare model, optimizer
|
|
# ====================================
|
|
# bert pretrained model
|
|
|
|
if args.model_type == "bert":
|
|
cfg = BertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS)
|
|
model = BertForSequenceClassification(cfg)
|
|
elif args.model_type == "albert":
|
|
cfg = AlbertConfig(vocab_size=VOCAB_SIZE, num_labels=NUM_LABELS)
|
|
model = AlbertForSequenceClassification(cfg)
|
|
else:
|
|
raise RuntimeError
|
|
|
|
# optimizer
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": WEIGHT_DECAY,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
|
|
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
|
|
|
|
# lr scheduler
|
|
total_steps = len(train_dataloader) * NUM_EPOCHS
|
|
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
|
|
lr_scheduler = get_linear_schedule_with_warmup(
|
|
optimizer,
|
|
num_warmup_steps=num_warmup_steps,
|
|
num_training_steps=total_steps,
|
|
)
|
|
|
|
# criterion
|
|
criterion = lambda inputs: inputs[0]
|
|
|
|
# ==============================
|
|
# Boost with ColossalAI
|
|
# ==============================
|
|
model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler)
|
|
|
|
# ==============================
|
|
# Benchmark model
|
|
# ==============================
|
|
|
|
results = benchmark(
|
|
model, booster, optimizer, lr_scheduler, train_dataloader, criterion=criterion, epoch_num=NUM_EPOCHS
|
|
)
|
|
|
|
coordinator.print_on_master(results)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|