ColossalAI/examples/tutorial/opt/inference/script/process-opt-175b/convert_ckpt.py

56 lines
1.9 KiB
Python

import argparse
import json
import os
import re
from collections import defaultdict
import numpy as np
import torch
def load_json(path: str):
with open(path) as f:
return json.load(f)
def parse_shape_info(flat_dir: str):
data = load_json(os.path.join(flat_dir, 'shape.json'))
flat_info = defaultdict(lambda: defaultdict(list))
for k, shape in data.items():
matched = re.match(r'decoder.layers.\d+', k)
if matched is None:
flat_key = 'flat_param_0'
else:
flat_key = f'{matched[0]}.flat_param_0'
flat_info[flat_key]['names'].append(k)
flat_info[flat_key]['shapes'].append(shape)
flat_info[flat_key]['numels'].append(int(np.prod(shape)))
return flat_info
def convert(flat_dir: str, output_dir: str, part: int):
flat_path = os.path.join(flat_dir, f'reshard-model_part-{part}-shard0.pt')
output_path = os.path.join(output_dir, f'reshard-model_part-{part}.pt')
flat_meta = load_json(os.path.join(flat_dir, 'flat-meta.json'))
flat_sd = torch.load(flat_path)
print(f'Loaded flat state dict from {flat_path}')
output_sd = {}
for flat_key, param_meta in flat_meta.items():
flat_param = flat_sd['model'][flat_key]
assert sum(param_meta['numels']) == flat_param.numel(
), f'flat {flat_key} {flat_param.numel()} vs {sum(param_meta["numels"])}'
for name, shape, param in zip(param_meta['names'], param_meta['shapes'], flat_param.split(param_meta['numels'])):
output_sd[name] = param.view(shape)
torch.save(output_sd, output_path)
print(f'Saved unflat state dict to {output_path}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('flat_dir')
parser.add_argument('output_dir')
parser.add_argument('part', type=int)
args = parser.parse_args()
convert(args.flat_dir, args.output_dir, args.part)