Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

317 lines
12 KiB

import copy
from typing import Any, Callable, Dict, Iterable, List, Tuple
import torch
from torch.fx.node import Node, map_arg
from colossalai.fx.profiler import activation_size, parameter_size
from .utils import (
delete_free_var_from_last_use,
find_idx_by_name,
get_node_shape,
is_non_compute_node_except_placeholder,
)
class EstimateMemory(object):
def __init__(self) -> None:
pass
def _get_meta_node_size(self, x):
x = x.meta["tensor_meta"]
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
return x
def _get_output_node(self, n):
fwd_out = {
x.uuid: x
for x in n.meta["fwd_out"]
if isinstance(x, torch.Tensor) and hasattr(x, "uuid")
}
out_size = activation_size(fwd_out)
out_node = [n.name] if out_size > 0 else []
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
# out_size = 0
return out_size, out_node
def _get_output_node_size(self, n):
return self._get_output_node(n)[0]
def _add_active_node(self, n, active_list):
new_active = self._get_output_node(n)[1]
if n.op == "placeholder":
new_active.append(n.name)
for i in new_active:
if i not in active_list:
active_list.append(i)
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
delete_size = 0
delete_node = []
if user.op not in ("output",):
nodes_to_delete = user_to_last_uses.get(user, [])
if to_keep is not None:
keep_list = []
for n in nodes_to_delete:
if n.name in to_keep:
keep_list.append(n)
for n in keep_list:
if n in nodes_to_delete:
nodes_to_delete.remove(n)
if len(nodes_to_delete):
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
for i in range(len(out_node)):
if out_node[i][0] > 0:
delete_node.append(out_node[i][1][0])
elif nodes_to_delete[i].op == "placeholder":
delete_node.append(nodes_to_delete[i].name)
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
# delete_node.append(nodes_to_delete[i].name)
return delete_size, delete_node
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
for i in delete_node:
if i in active_list:
active_list.remove(i)
def _get_chunk_inputs_size(
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
):
nodes_to_delete = []
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
chunk_input_users = chunk_input.users.keys()
chunk_input_users_idx = [
find_idx_by_name(i.name, node_list) for i in chunk_input_users
]
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
if chunk_input not in nodes_to_delete:
nodes_to_delete.append(chunk_input)
out_node = [self._get_output_node(i) for i in nodes_to_delete]
delete_size = sum([i[0] for i in out_node])
return delete_size
def _get_last_usr(self, nodes):
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
def register_last_uses(n: Node, user: Node):
if n not in node_to_last_use:
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
for node in reversed(nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return user_to_last_uses
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
mem = 0
not_contiguous_ops = ["permute"]
inherit_contiguous_ops = ["transpose", "view"]
if node.op == "call_function" and any(
n in node.name for n in ["matmul", "reshape"]
):
for n in node.args:
if n in not_contiguous_list:
# matmul won't change origin tensor, but create a tmp copy
mem += self._get_output_node_size(n)
elif node.op == "call_module":
for n in node.args:
if n in not_contiguous_list:
# module will just make origin tensor to contiguous
if delete:
not_contiguous_list.remove(n)
elif node.op == "call_method" and any(
i in node.name for i in not_contiguous_ops
):
if node not in not_contiguous_list:
not_contiguous_list.append(node)
return mem
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
if node not in chunk_node_dim:
return 1.0
node_shape = get_node_shape(node)
chunk_dim = chunk_node_dim[node]["chunk_dim"]
if chunk_dim is None:
return 1.0
else:
return float(chunk_size) / node_shape[chunk_dim]
def _get_chunk_delete_node_size(
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
):
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
# return 0
if user.op in ("placeholder", "output"):
return 0
nodes_to_delete = user_to_last_uses.get(user, [])
delete_size = 0
for n in nodes_to_delete:
if n.name in chunk_inputs_names:
continue
delete_size += self._get_output_node_size(n) * chunk_ratio
return delete_size
def _print_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def _print_compute_op_mem_log(self, log, nodes, title=None):
if title:
print(title)
for idx, (l, n) in enumerate(zip(log, nodes)):
if n.op in ["placeholder", "get_attr", "output"]:
continue
if any(i in n.name for i in ["getitem", "getattr"]):
continue
print("%s:%.2f \t" % (n.name, l), end="")
if (idx + 1) % 3 == 0:
print("")
print("\n")
def estimate_chunk_inference_mem(
self,
node_list,
chunk_infos=None,
print_mem=False,
):
act_memory = 0.0
act_memory_peak_log = []
act_memory_after_node_log = []
active_node_list = []
active_node_list_log = []
not_contiguous_list = []
user_to_last_uses = self._get_last_usr(node_list)
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
use_chunk = True if chunk_infos is not None else False
chunk_within = False
chunk_region_idx = None
chunk_ratio = 1 # use it to estimate chunk mem
chunk_inputs_names = []
if use_chunk:
chunk_regions = [i["region"] for i in chunk_infos]
chunk_starts = [i[0] for i in chunk_regions]
chunk_ends = [i[1] for i in chunk_regions]
chunk_inputs = [i["inputs"] for i in chunk_infos]
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
j.name for i in chunk_inputs_non_chunk for j in i
]
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
chunk_sizes = [
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
]
for idx, node in enumerate(node_list):
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
if use_chunk and idx in chunk_starts:
chunk_within = True
chunk_region_idx = chunk_starts.index(idx)
act_memory += self._get_output_node_size(
chunk_outputs[chunk_region_idx]
) / (1024**2)
# determine chunk ratio for current node
if chunk_within:
chunk_ratio = self._get_chunk_ratio(
node,
chunk_node_dim[chunk_region_idx],
chunk_sizes[chunk_region_idx],
)
# if node is placeholder, just add the size of the node
if node.op == "placeholder":
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
act_memory_peak_log.append(act_memory)
# skip output
elif node.op == "output":
continue
# no change for non compute node
elif is_non_compute_node_except_placeholder(node):
act_memory_peak_log.append(act_memory)
# node is a compute op
# calculate tmp, output node and delete node memory
else:
# forward memory
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
act_memory += (
self._get_contiguous_memory(node, not_contiguous_list)
* chunk_ratio
/ (1024**2)
)
act_memory += (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
# record max act memory
act_memory_peak_log.append(act_memory)
# delete useless memory
act_memory -= (
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
* chunk_ratio
/ (1024**2)
)
# delete unused vars not in chunk_input_list
# we can't delete input nodes until chunk ends
if chunk_within:
act_memory -= self._get_chunk_delete_node_size(
node,
user_to_last_uses_no_free_var,
chunk_ratio,
chunk_inputs_names,
) / (1024**2)
else:
act_memory -= self._get_delete_node_size(
node, user_to_last_uses_no_free_var, chunk_inputs_names
) / (1024**2)
# log active node, only effective without chunk
self._add_active_node(node, active_node_list)
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
# if node in chunk end nodes, restore chunk settings
if use_chunk and idx in chunk_ends:
act_memory -= (
self._get_output_node_size(node) * chunk_ratio / (1024**2)
)
act_memory -= self._get_chunk_inputs_size(
chunk_inputs[chunk_region_idx],
chunk_inputs_non_chunk[chunk_region_idx],
node_list,
chunk_regions[chunk_region_idx][1],
) / (1024**2)
chunk_within = False
chunk_ratio = 1
chunk_region_idx = None
act_memory_after_node_log.append(act_memory)
active_node_list_log.append(copy.deepcopy(active_node_list))
if print_mem:
print("with chunk" if use_chunk else "without chunk")
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
# self._print_compute_op_mem_log(
# act_memory_after_node_log, node_list, "after"
# )
# param_memory = parameter_size(gm)
# all_memory = act_memory + param_memory
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log