mirror of https://github.com/hpcaitech/ColossalAI
37 lines
1.2 KiB
Python
37 lines
1.2 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from chatgpt.replay_buffer import ReplayBuffer
|
|
from torch.utils.data import DataLoader
|
|
|
|
from .base import Strategy
|
|
|
|
|
|
class NaiveStrategy(Strategy):
|
|
"""
|
|
Strategy for single GPU. No parallelism is used.
|
|
"""
|
|
|
|
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
|
|
loss.backward()
|
|
|
|
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
|
|
optimizer.step()
|
|
|
|
def setup_distributed(self) -> None:
|
|
pass
|
|
|
|
def setup_model(self, model: nn.Module) -> nn.Module:
|
|
return model
|
|
|
|
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
|
|
return optimizer
|
|
|
|
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
|
|
return DataLoader(replay_buffer,
|
|
batch_size=replay_buffer.sample_batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
pin_memory=pin_memory,
|
|
collate_fn=replay_buffer.collate_fn)
|