mirror of https://github.com/hpcaitech/ColossalAI
153 lines
5.5 KiB
Python
153 lines
5.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
from typing import Any
|
|
from torch.optim import Optimizer
|
|
from torch.distributed import ReduceOp
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
|
from ._fp16_optimizer import FP16Optimizer
|
|
|
|
|
|
class NaiveAMPOptimizer(ColossalaiOptimizer):
|
|
"""A wrapper class for optimizer to cast all parameters to fp16
|
|
|
|
Args:
|
|
optim (torch.optim.Optimizer): A normal optimizer like Adam or SGD.
|
|
grad_scaler (BaseGradScaler): grad scaler for gradient chose in
|
|
``constant_grad_scaler`` or ``dynamic_grad_scaler``.
|
|
clip_grad_norm (float, optional): clip gradients with this global L2 norm. Default 0.
|
|
verbose (bool, optional): if set to `True`, will print debug info. Default False.
|
|
|
|
Note:
|
|
clipping is ignored if ``clip_grad_norm`` equals 0.
|
|
"""
|
|
|
|
def __init__(self, optim: Optimizer, *args, **kwargs):
|
|
optim = FP16Optimizer(optim, *args, **kwargs)
|
|
super().__init__(optim)
|
|
|
|
def backward(self, loss: Tensor):
|
|
self.optim.backward(loss)
|
|
|
|
def step(self):
|
|
return self.optim.step()
|
|
|
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
|
pass
|
|
|
|
|
|
class NaiveAMPModel(nn.Module):
|
|
r"""A wrapper class for model to cast the model into fp16 and
|
|
automatically cast the input and output
|
|
|
|
Args:
|
|
model (torch.nn.Module): torch.nn.Module to be wrapped.
|
|
output_to_fp32 (bool, optional): Whether cast output of this module into fp32. (Default: True)
|
|
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this module.
|
|
(Default: ``ParallelMode.DATA``)
|
|
sync_buffer (bool, optional): whether to synchronize buffer. (Default: True)
|
|
|
|
Note:
|
|
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
|
|
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model: nn.Module,
|
|
output_to_fp32: bool = True,
|
|
parallel_mode: ParallelMode = ParallelMode.DATA,
|
|
sync_buffer: bool = True):
|
|
super().__init__()
|
|
self.model = model.half()
|
|
self._output_to_fp32 = output_to_fp32
|
|
self._sync_buf = sync_buffer
|
|
|
|
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
|
|
self._process_group = gpc.get_group(parallel_mode)
|
|
self._world_size = gpc.get_world_size(parallel_mode)
|
|
else:
|
|
self._process_group = None
|
|
self._world_size = 1
|
|
self._sync_buf = False
|
|
self._first_eval_run = False
|
|
|
|
@property
|
|
def sync_buffer(self):
|
|
return self._sync_buf
|
|
|
|
@sync_buffer.setter
|
|
def sync_buffer(self, state: bool):
|
|
self._sync_buf = state
|
|
|
|
def _convert_to_fp16(self, input_: Any):
|
|
if isinstance(input_, Tensor) and input_.dtype == torch.float32:
|
|
input_ = input_.half()
|
|
return input_
|
|
|
|
def _convert_to_fp32(self, input_: Any):
|
|
if isinstance(input_, Tensor) and input_.dtype == torch.float16:
|
|
input_ = input_.float()
|
|
return input_
|
|
|
|
def _reduce_module_buffer(self):
|
|
"""
|
|
All-reduce the buffers (e.g. running stats of batch normalization) across
|
|
data parallel ranks so that all the ranks will produce consistent results
|
|
when given the same input
|
|
"""
|
|
buf_list = []
|
|
|
|
# find valid buffers
|
|
for buf in self.model.buffers():
|
|
if buf is not None:
|
|
buf_list.append(buf)
|
|
|
|
# reduce buffers across data parallel ranks
|
|
if buf_list:
|
|
coalesced_buf = _flatten_dense_tensors(buf_list)
|
|
coalesced_buf.div_(self._world_size)
|
|
dist.all_reduce(coalesced_buf, op=ReduceOp.SUM, group=self._process_group)
|
|
unflattened_buf_list = _unflatten_dense_tensors(coalesced_buf, buf_list)
|
|
for old, new in zip(buf_list, unflattened_buf_list):
|
|
old.copy_(new)
|
|
|
|
def eval(self):
|
|
self.model.eval()
|
|
|
|
# we only sync buffer in the first eval iteration
|
|
# so that future eval iterations can be done without communication
|
|
self._first_eval_run = True
|
|
|
|
def forward(self, *args, **kwargs):
|
|
# reduce buffers after forward will lead to error
|
|
# as we cannot change the variables needed for gradient computation after forward
|
|
# so we sync buffer before forward
|
|
if (self.training or self._first_eval_run) and self._sync_buf:
|
|
with torch.no_grad():
|
|
self._reduce_module_buffer()
|
|
|
|
if self._first_eval_run:
|
|
self._first_eval_run = False
|
|
|
|
if args:
|
|
args = [self._convert_to_fp16(arg) for arg in args]
|
|
if kwargs:
|
|
for k, v in kwargs.items():
|
|
kwargs[k] = self._convert_to_fp16(v)
|
|
|
|
out = self.model(*args, **kwargs)
|
|
|
|
if self._output_to_fp32:
|
|
if isinstance(out, Tensor):
|
|
out = self._convert_to_fp32(out)
|
|
elif isinstance(out, (tuple, list)):
|
|
out = [self._convert_to_fp32(val) for val in out]
|
|
return out
|