You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_gemini/test_fwd_bwd.py

117 lines
4.1 KiB

import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.legacy.amp import convert_to_apex_amp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
{"placement_policy": "auto"},
]
def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
chunk_manager = model.chunk_manager
param_list = [p for p in model.parameters()]
chunk_list = chunk_manager.get_chunks(param_list)
if not model.reuse_fp16_chunk:
chunk_list = [chunk.grad_chunk for chunk in chunk_list]
for chunk in chunk_list:
chunk_manager.access_chunk(chunk)
for p0, p1 in zip(model.parameters(), torch_model.parameters()):
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("keep_gather", [False, True])
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("use_grad_checkpoint", [False, True])
@parameterize("master_weights", [False, True])
def exam_gpt_fwd_bwd(
placement_config,
keep_gather,
model_name: str,
use_grad_checkpoint: bool = False,
master_weights: bool = True,
):
init_device = get_accelerator().get_current_device()
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
set_seed(42)
model = model_builder()
set_seed(42)
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p.data)
if use_grad_checkpoint:
model.gradient_checkpointing_enable()
torch_model.gradient_checkpointing_enable()
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = keep_gather
model = GeminiDDP(
model, config_dict, init_device, pin_memory=True, **placement_config, master_weights=master_weights
)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1)
rank = dist.get_rank()
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=1, master_weights=master_weights)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[rank])
set_seed(rank)
data = data_gen_fn()
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
torch_optim.zero_grad()
zero_optim.zero_grad()
# set random seed is same as torch_model.eval()
set_seed(42)
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
set_seed(42)
loss = run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
assert_close(torch_loss.float(), loss.float())
check_grad(model, torch_model)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_gpt_fwd_bwd()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 4])
@rerun_if_address_is_in_use()
def test_gpt(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_gpt(1)