Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

792 lines
35 KiB

import copy
import logging
import os
from pathlib import Path
from shutil import rmtree
from typing import Dict, Iterator, Optional, OrderedDict, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed import ProcessGroup
from colossalai.checkpoint_io import CheckpointIndexFile, HybridParallelCheckpointIO
from colossalai.checkpoint_io.utils import (
StateDictSharder,
gather_distributed_param,
get_model_base_filenames,
get_optimizer_base_filenames,
is_safetensors_available,
load_shard_state_dict,
load_state_dict,
load_state_dict_into_model,
load_states_into_optimizer,
save_config_file,
save_param_groups,
save_state_dict,
save_state_dict_shards,
sharded_optimizer_loading_epilogue,
)
from colossalai.interface import OptimizerWrapper
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import (
get_dp_group,
get_dp_rank,
get_dp_size,
get_ep_group,
get_ep_rank,
get_ep_size,
is_moe_tensor,
)
class MoECheckpointIO(HybridParallelCheckpointIO):
def __init__(
self,
dp_group: ProcessGroup,
pp_group: ProcessGroup,
tp_group: ProcessGroup,
zero_stage: int,
) -> None:
assert zero_stage in [
0,
1,
2,
], f"zero_stage should be 0 or 1 or 2, got {zero_stage}"
super().__init__(dp_group, pp_group, tp_group, zero_stage)
self.parallel = MOE_MANAGER.parallel
def pre_load_model(self, model: nn.Module, state_dict: dict) -> dict:
"""
Preprocess state_dict before loading and slice the state_dict of MOE tensors.
"""
for name, param in state_dict.items():
if ".experts." in name:
if name in dict(model.named_parameters()):
model_param = dict(model.named_parameters())[name]
if is_moe_tensor(model_param):
ep_rank = get_ep_rank(model_param)
ep_size = get_ep_size(model_param)
expert_num = param.shape[0] // ep_size
assert param.shape[0] % ep_size == 0
param = param[ep_rank * expert_num : (ep_rank + 1) * expert_num]
state_dict[name] = param
dist.barrier()
return state_dict
def _model_sharder(
self,
state_dict: nn.Module,
prefix: str = "",
keep_vars: bool = False,
size_per_shard: int = 1024,
) -> Iterator[Tuple[OrderedDict, int]]:
# An internel method that breaks state_dict of model into shards within limited size.
state_dict_sharder = StateDictSharder(size_per_shard)
for name, param in state_dict.items():
if param is None:
continue
# Gather tensor pieces when using tensor parallel.
param_ = gather_distributed_param(param, keep_vars=False)
block, block_size = state_dict_sharder.append_param(prefix + name, param_)
if block is not None:
yield block, block_size
# Return the last block in sharder.
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool) -> None:
state_dict = torch.load(checkpoint)
state_dict = self.pre_load_model(model, state_dict)
model.load_state_dict(state_dict, strict=strict if self.pp_size == 1 else False)
def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False):
"""
Load sharded model with the given path to index file of checkpoint folder.
Args:
model (nn.Module): The model to be loaded.
checkpoint_index_file (str): Path to the index file of checkpointing folder.
strict (bool, optional): For name matching during loading state_dict. Defaults to False.
This argument should be manually set to False since params on same device might be stored in different files.
"""
# Check whether the checkpoint uses safetensors.
use_safetensors = False
if "safetensors" in checkpoint_index_file.name:
use_safetensors = True
if use_safetensors and not is_safetensors_available():
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.")
# Read checkpoint index file.
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
ckpt_root_path = ckpt_index_file.root_path
weight_map = ckpt_index_file.weight_map
strict = False
# Load params & buffers to model.
# Keep a record of loaded files so that file will not be repeatedly loaded.
loaded_file = set()
def _load(name: str):
if name not in weight_map:
raise ValueError(f"{name} is not stored in checkpoint, please check your checkpointing configuration!")
filename = weight_map[name]
# If this param/buffer has been loaded before, directly return.
if filename in loaded_file:
return
file_path = os.path.join(ckpt_root_path, filename)
state_dict = load_shard_state_dict(Path(file_path), use_safetensors)
state_dict = self.pre_load_model(model, state_dict)
missing_keys = []
load_state_dict_into_model(
model,
state_dict,
missing_keys=missing_keys,
strict=strict,
load_sub_module=True,
)
loaded_file.add(filename)
# Load parameters.
for name, _ in model.named_parameters():
_load(name)
if self.verbose:
logging.info(f"The model has been successfully loaded from sharded checkpoint: {ckpt_root_path}.")
def pre_save_model(self, model: nn.Module) -> dict:
state_dict = model.state_dict()
for name, param in model.named_parameters():
if ".experts." in name and is_moe_tensor(param):
ep_group = get_ep_group(param)
ep_rank = get_ep_rank(param)
ep_size = get_ep_size(param)
dp_rank = get_dp_rank(param)
if dp_rank == 0:
param = param.data.cuda()
all_param = [torch.zeros_like(param) for _ in range(ep_size)]
# gather param from every ep rank
dist.all_gather(all_param, param, group=ep_group)
if ep_rank == 0:
all_param = torch.cat(all_param, dim=0)
state_dict[name] = all_param.cpu()
if self.pp_size > 1:
if self.dp_rank == 0:
out = [None for _ in range(self.pp_size)]
dist.all_gather_object(out, state_dict, group=self.pp_group)
if self.pp_rank == 0:
new_state_dict = {}
for o in out:
new_state_dict.update(o)
state_dict = new_state_dict
dist.barrier()
return state_dict
def save_unsharded_model(
self,
model: nn.Module,
checkpoint: str,
gather_dtensor: bool,
use_safetensors: bool,
):
state_dict = self.pre_save_model(model)
if dist.get_rank() == 0:
torch.save(state_dict, checkpoint)
dist.barrier()
def save_sharded_model(
self,
model: nn.Module,
checkpoint: str,
gather_dtensor: bool = True,
prefix: Optional[str] = None,
size_per_shard: int = 1024,
use_safetensors: bool = False,
) -> None:
"""
Save sharded model checkpoint under the given checkpointing path.
The following files will be created under the path:
- An index file (pytorch_model.bin.index.json) containing a map between model params/buffers and file names.
- Multiple files that store state tensors of models.
The filenames are in the form of "pytorch_model.<prefix>-000XX.bin"
Args:
model (nn.Module): Model on local device to be saved.
checkpoint (str): Checkpointing path which should be a directory path.
gather_dtensor (bool, optional): Whether to gather_dtensor, currently not used. Defaults to True.
prefix (str, optional): Perfix of file to save. Defaults to None.
size_per_shard (int, optional): Size per shard in MB. Defaults to 1024.
use_safetensors (bool, optional): Whether to use safe tensors. Defaults to False.
"""
torch.cuda.empty_cache()
if os.path.isfile(checkpoint):
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
return
Path(checkpoint).mkdir(parents=True, exist_ok=True)
# Then collect the sharded parameters & buffers along tp_group.
# Only devices with tp_rank == 0 are responsible for model saving.
state_dict = self.pre_save_model(model)
if dist.get_rank() == 0:
state_dict_shard = self._model_sharder(state_dict, size_per_shard=size_per_shard)
# Devices along the same dp_group share the same copies of model.
# So only let the device with dp_rank == 0 save the model.
if self.dp_rank != 0:
return
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors)
index_file = CheckpointIndexFile(checkpoint)
control_saving = self.tp_rank == 0
total_size = save_state_dict_shards(
sharded_state_dict=state_dict_shard,
checkpoint=checkpoint,
index_file=index_file,
base_filename=weights_name,
is_master=control_saving,
use_safetensors=use_safetensors,
)
if control_saving:
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
save_config_file(model, checkpoint)
if self.verbose:
logging.info(
f"The model is split into checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
dist.barrier()
torch.cuda.empty_cache()
# ========================================================
# Abstract methods for optimizer loading/saving implementation
# ========================================================
def pre_load_optim(
self,
state: OrderedDict,
working_param,
current_shape: torch.Size,
original_shape: torch.Size,
device: torch.device,
inplace: bool,
) -> OrderedDict:
"""
With complete optimizer states of a specific parameter loaded from checkpoint,
slice out the sharded optimizer states kept by current device.
Args:
state (OrderedDict): Complete optimizer states of a given parameter, loaded from checkpoint.
current_shape (torch.Size): The size of parameter after sharding.
original_shape (torch.Size): The size of parameter before sharding.
device (torch.device): The destination device of loaded optimizer states.
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state.
Returns:
OrderedDict: The sharded optimizer state of the given parameter.
"""
state_ = state if inplace else copy.deepcopy(state)
is_moe_tensor_flag = is_moe_tensor(working_param)
if is_moe_tensor_flag:
ep_rank = get_ep_rank(working_param)
ep_size = get_ep_size(working_param)
for k, v in state_.items():
if isinstance(v, torch.Tensor) and k != "step":
if is_moe_tensor_flag:
with torch.no_grad():
expert_num = v.shape[0] // ep_size
assert v.shape[0] % ep_size == 0
v = v[ep_rank * expert_num : (ep_rank + 1) * expert_num]
else:
# Shard state along data parallel group when using Zero.
padding_size = (self.dp_size - v.numel() % self.dp_size) % self.dp_size
with torch.no_grad():
v = v.flatten()
if padding_size > 0:
v = torch.nn.functional.pad(v, [0, padding_size])
slice_size = v.numel() // self.dp_size
v = v.split(slice_size, dim=0)[self.dp_rank]
state_[k] = v.detach().clone().to(device)
return state_
def load_sharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint_index_file: str, prefix: str = ""):
"""
Load sharded optimizer with the given path to index file of checkpoint folder.
Args:
optimizer (OptimizerWrapper): The optimizer to be loaded.
checkpoint_index_file (str): Path to the index file of checkpointing folder.
prefix (str): Not used.
"""
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
def _get_param_id_from_optimizer_param(
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None, optimizer=None
):
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
elif hasattr(optimizer, "moe_master_to_working_map") and id(param) in optimizer.moe_master_to_working_map:
working_param = optimizer.moe_master_to_working_map[id(param)]
else:
working_param = param
return optimizer.param_info["param2id"][id(working_param)]
# id_map is a mapping from param ids kept by current pipeline, to their corresponding parameter objects.
# When Zero is used, the mapped parameter objects should be fp32 master parameters.
# IDs should be obtained through saved param2id mapping earlier saved in optimizer.param_info.
id_map = {}
master_to_working_map = optimizer.get_master_to_working_map()
for pg in optimizer.optim.param_groups:
for param in pg["params"]:
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map, optimizer)
id_map[param_id] = param
# Read checkpoint index file.
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
ckpt_root_path = ckpt_index_file.root_path
weight_map = ckpt_index_file.weight_map
weight_map = {int(k): v for k, v in weight_map.items()} # convert saved id from str to int
# Load param_groups
param_group_path = ckpt_index_file.get_param_group_filename()
if param_group_path is None:
raise RuntimeError(
f"Invalid index file path {checkpoint_index_file} for an optimizer. \
Lacking param group file under current directory."
)
saved_groups = torch.load(param_group_path)
updated_groups = []
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups):
# obtain updated param group
new_pg = copy.deepcopy(saved_pg)
new_pg["params"] = old_pg["params"] # The parameters in the same group shouldn't change.
updated_groups.append(new_pg)
# ep param group
if len(optimizer.optim.param_groups) > len(saved_groups):
new_pg = copy.deepcopy(saved_pg)
new_pg["params"] = optimizer.optim.param_groups[-1]["params"]
updated_groups.append(new_pg)
optimizer.optim.__dict__.update({"param_groups": updated_groups})
# Load saved states to optimizer.
# Keep a record of loaded files so that file will not be repeatedly loaded.
loaded_file = set()
for pg in optimizer.optim.param_groups:
for param in pg["params"]:
if param is None:
continue
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map, optimizer)
if param_id not in weight_map:
continue
filename = weight_map[param_id]
# If this param's states has been loaded before, directly return.
if filename in loaded_file:
continue
file_path = os.path.join(ckpt_root_path, filename)
state_dict = load_shard_state_dict(Path(file_path), use_safetensors=False)
# Then shard the loaded optimizer states if using tp/zero.
for pid, state in list(state_dict.items()):
if pid in id_map:
param = id_map[pid]
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
elif (
hasattr(optimizer, "moe_master_to_working_map")
and id(param) in optimizer.moe_master_to_working_map
):
working_param = optimizer.moe_master_to_working_map[id(param)]
else:
working_param = param
original_shape = optimizer.param_info["param2shape"][id(working_param)]
sharded_state = self.pre_load_optim(
state,
working_param,
current_shape=working_param.shape,
original_shape=original_shape,
device="cpu",
inplace=True,
)
state_dict[pid] = sharded_state
load_states_into_optimizer(optimizer.optim, state_dict, id_map, strict=True)
loaded_file.add(filename)
sharded_optimizer_loading_epilogue(optimizer.optim)
if self.verbose and self.coordinator.is_master():
logging.info(f"The optimizer has been successfully loaded from sharded checkpoint: {ckpt_root_path}.")
dist.barrier()
def load_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str):
"""
Load optimizer from a file with given path.
Args:
optimizer (OptimizerWrapper): The optimizer to be loaded.
checkpoint_index_file (str): Path to the checkpoint file.
"""
def _get_param_id_from_optimizer_param(
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None
):
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
else:
working_param = param
if id(working_param) in optimizer.param_info["param2id"]:
return optimizer.param_info["param2id"][id(working_param)]
else:
None
if self.coordinator.is_master():
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
# Complete optimizer state_dict loaded from checkpoint, need to be processed later.
state_dict = load_state_dict(checkpoint)
# Load param_groups.
updated_groups = []
saved_groups = state_dict["param_groups"]
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups):
new_pg = copy.deepcopy(saved_pg)
new_pg["params"] = old_pg["params"] # Only keep the parameters kept by current pipeline stage.
updated_groups.append(new_pg)
# ep extra group
if MOE_MANAGER.parallel == "EP":
new_pg = copy.deepcopy(saved_pg)
new_pg["params"] = optimizer.optim.param_groups[-1][
"params"
] # Only keep the parameters kept by current pipeline stage.
for param in new_pg["params"]:
param.data = param.data.to(torch.float32)
updated_groups.append(new_pg)
optimizer.optim.__dict__.update({"param_groups": updated_groups})
# Load saved states to optimizer. First discard those states not belonging to current pipeline stage.
master_to_working_map = optimizer.get_master_to_working_map()
id_map = {}
for pg in optimizer.optim.param_groups:
for param in pg["params"]:
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map)
if param_id is not None:
id_map[param_id] = param
load_states_into_optimizer(optimizer.optim, state_dict["state"], id_map, strict=True)
# Then shard the loaded optimizer states if using tp/zero.
for param, state in optimizer.optim.state.items():
if param is None:
continue
device = param.device
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
else:
working_param = param
original_shape = optimizer.param_info["param2shape"][id(working_param)]
sharded_state = self.pre_load_optim(
state,
param,
current_shape=working_param.shape,
original_shape=original_shape,
device=device,
inplace=True,
)
optimizer.optim.state[param] = sharded_state
sharded_optimizer_loading_epilogue(optimizer.optim)
dist.barrier()
def pre_save_optim(
self,
state: OrderedDict,
param: torch.Tensor,
inplace: bool,
device: torch.device = torch.device("cpu"),
) -> OrderedDict:
"""
With given parameter and its optimizer states, gather the complete optimizer state for saving.
Args:
state (OrderedDict): Optimizer states of given parameter, might be distributed among tp/dp group if using TP/Zero.
param (torch.Tensor): The given parameter. It should be working_param when using Zero.
original_shape (torch.Size): The size of parameter before sharding.
dp_group (ProcessGroup): The process group of data parallel.
tp_group (ProcessGroup): The process group of tensor parallel.
use_zero (bool): Whether Zero is used.
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state.
device (torch.device): The destination device of loaded optimizer states. Defaults to torch.device('cpu').
Returns:
OrderedDict: The complete optimizer state of given parameter.
"""
if is_moe_tensor(param):
moe_dp_group = get_dp_group(param)
moe_dp_size = get_dp_size(param)
moe_ep_group = get_ep_group(param)
moe_ep_size = get_ep_size(param)
state_ = state if inplace else copy.deepcopy(state)
for k, v in state_.items():
if isinstance(v, torch.Tensor) and k != "step":
# moe param
if is_moe_tensor(param):
# dp gather
v = v.cuda()
gather_tensor = [torch.zeros_like(v) for _ in range(moe_dp_size)]
dist.all_gather(gather_tensor, v, group=moe_dp_group)
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param)
# ep gather
gather_tensor = [torch.zeros_like(v) for _ in range(moe_ep_size)]
dist.all_gather(gather_tensor, v, group=moe_ep_group)
v = torch.cat(gather_tensor, dim=0)
else:
# global dp
v = v.cuda()
gather_tensor = [torch.zeros_like(v) for _ in range(dist.get_world_size(self.dp_group))]
dist.all_gather(gather_tensor, v, group=self.dp_group)
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param)
state_[k] = v.detach().clone().to(device)
return state_
def _optimizer_sharder(
self,
optimizer: OptimizerWrapper,
size_per_shard: int = 1024,
):
# An internel method that breaks state_dict of optimizer into shards within limited size.
state_dict_sharder = StateDictSharder(size_per_shard)
param_info = optimizer.param_info
master_to_working_map = optimizer.get_master_to_working_map()
for param, state in optimizer.optim.state.items():
if param is None:
continue
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
elif hasattr(optimizer, "moe_master_to_working_map") and id(param) in optimizer.moe_master_to_working_map:
working_param = optimizer.moe_master_to_working_map[id(param)]
else:
working_param = param
param_id = param_info["param2id"][id(working_param)]
state_ = self.pre_save_optim(
state,
working_param,
inplace=False,
device=torch.device("cuda"),
)
block, block_size = state_dict_sharder.append_optim_state(param_id, state_)
if block is not None:
yield block, block_size
# Return the last block in sharder.
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
def save_sharded_optimizer(
self,
optimizer: OptimizerWrapper,
checkpoint: str,
gather_dtensor: bool = True,
prefix: Optional[str] = None,
size_per_shard: int = 1024,
):
"""
Save sharded optimizer checkpoint under the given checkpointing path.
The following files will be created under the path:
- An index file (pytorch_optim.bin.index.json) containing a map between optimizer states and file names
- A group file (pytorch_optim_group.bin) recording information of param_groups
- Multiple files that store state tensors of optimizers.
If pipeline parallelism is used, the filenames are in the form of "pytorch_optim.<prefix>-stage-000XX-shard-000XX.bin".
If pipeline parallelism is not used, "pytorch_optim.<prefix>-000XX.bin"
Args:
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict
checkpoint (str): Path to save optimizer state_dict
gather_dtensor (bool): Whether to gather_dtensor, not used
prefix (str): Perfix of file to save
size_per_shard (int): Max file size of each file shard that store state tensors
"""
torch.cuda.empty_cache()
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
if os.path.isfile(checkpoint):
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
return
Path(checkpoint).mkdir(parents=True, exist_ok=True)
# Devices along the same dp_group share the same copies of states when zero is not used.
# In this case only let the device with dp_rank == 0 save the model.
if not self.use_zero and self.dp_rank != 0:
return
# Then collect the sharded states along dp_group(if using zero)/tp_group.
# Only devices with (dp_rank == 0 and tp_rank == 0) are responsible for states saving.
state_dict_shard = self._optimizer_sharder(
optimizer,
size_per_shard=size_per_shard,
)
states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix)
index_file = CheckpointIndexFile(checkpoint)
control_saving = self.dp_rank == 0 and self.tp_rank == 0
if self.pp_size == 1:
# When pipeline is not used, save the optimizer shards as in general checkpointIO
total_size = save_state_dict_shards(
sharded_state_dict=state_dict_shard,
checkpoint=checkpoint,
index_file=index_file,
base_filename=states_name,
is_master=control_saving,
)
if control_saving:
# Store param groups.
index_file.append_meta_data("param_groups", param_group_file)
group_file_path = os.path.join(checkpoint, param_group_file)
save_param_groups(optimizer.param_info, group_file_path)
# Store index file.
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
if self.verbose and self.coordinator.is_master():
logging.info(
f"The optimizer is going to be split to checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
else:
# When pipeline is used, each stage produces its own shard files and index files.
# Index files belonging to each stage are saved under a temporary folder ./tmp_index_files/
# After all the state_dicts have been saved, the master rank integrates all the index files into one final index file and deletes the tmp folder.
final_index_file_path = copy.deepcopy(save_index_file)
tmp_index_file_folder = os.path.join(checkpoint, "tmp_index_files")
Path(tmp_index_file_folder).mkdir(parents=True, exist_ok=True)
# Manage filenames of sharded weights and index file for each pipeline stage.
states_name = states_name.replace(".bin", f"-stage-{self.pp_rank+1:05d}-shard.bin")
save_index_file = save_index_file.replace(".json", f"-stage-{self.pp_rank+1:05d}.json")
save_index_file = os.path.join("tmp_index_files", save_index_file)
total_size = save_state_dict_shards(
sharded_state_dict=state_dict_shard,
checkpoint=checkpoint,
index_file=index_file,
base_filename=states_name,
is_master=control_saving,
use_pp_format=True,
)
if control_saving:
assert (
self.dp_rank == 0 and self.tp_rank == 0
), "The saving process should have both dp_rank and tp_rank as 0."
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
else:
return
dist.barrier(self.pp_group)
# The global master rank integrates the index files and clean the folder.
if self.pp_rank == 0:
final_index_file = CheckpointIndexFile(checkpoint)
final_index_file.append_meta_data("total_size", 0)
for filename in os.listdir(tmp_index_file_folder):
stage_index_file = CheckpointIndexFile.from_file(os.path.join(tmp_index_file_folder, filename))
final_index_file.metadata["total_size"] += stage_index_file.metadata["total_size"]
for param_id, state_filename in stage_index_file.weight_map.items():
final_index_file.append_weight_map(param_id, state_filename)
# Store param groups.
final_index_file.append_meta_data("param_groups", param_group_file)
group_file_path = os.path.join(checkpoint, param_group_file)
save_param_groups(optimizer.param_info, group_file_path)
final_index_file.write_index_file(final_index_file_path)
rmtree(tmp_index_file_folder)
if self.verbose and self.coordinator.is_master():
logging.info(
f"The model is split into checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {final_index_file_path}."
)
torch.cuda.empty_cache()
def save_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool):
"""
Save optimizer state dict to a file with given path.
Args:
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict.
checkpoint (str): Path to save optimizer state_dict.
gather_dtensor (bool): Whether to gather_dtensor, not used.
"""
if self.coordinator.is_master():
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
# optimizer states of parameters kept by local device('s pipeline stage)
local_states = dict()
for param, state in optimizer.optim.state.items():
if param is None:
continue
# working param is needed for obtaining correct param_id
master_to_working_map = optimizer.get_master_to_working_map()
if master_to_working_map is not None and id(param) in master_to_working_map:
working_param = master_to_working_map[id(param)]
else:
working_param = param
# gather complete state from tp shards & dp shards
param_id = optimizer.param_info["param2id"][id(working_param)]
local_states[param_id] = self.pre_save_optim(
state,
working_param,
inplace=False,
device=torch.device("cuda"),
)
if self.pp_size == 1:
# When pipeline is not used, let master rank directly save the collected state_dict.
state_dict = {"param_groups": optimizer.optim.param_groups, "state": local_states}
if self.coordinator.is_master():
save_state_dict(state_dict, checkpoint, use_safetensors=False)
else:
# When pipeline is used, first collect state_dict from every pipeline stage, then save the complete state_dict.
states_list = [None for _ in range(self.pp_size)]
dist.barrier(self.pp_group)
dist.all_gather_object(states_list, local_states, self.pp_group)
# Only the master rank do the saving.
if self.coordinator.is_master():
state_dict = {"param_groups": optimizer.optim.param_groups, "state": dict()}
for _states in states_list:
state_dict["state"].update(_states)
save_state_dict(state_dict, checkpoint, use_safetensors=False)
dist.barrier()