mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
792 lines
35 KiB
792 lines
35 KiB
import copy |
|
import logging |
|
import os |
|
from pathlib import Path |
|
from shutil import rmtree |
|
from typing import Dict, Iterator, Optional, OrderedDict, Tuple |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.distributed import ProcessGroup |
|
|
|
from colossalai.checkpoint_io import CheckpointIndexFile, HybridParallelCheckpointIO |
|
from colossalai.checkpoint_io.utils import ( |
|
StateDictSharder, |
|
gather_distributed_param, |
|
get_model_base_filenames, |
|
get_optimizer_base_filenames, |
|
is_safetensors_available, |
|
load_shard_state_dict, |
|
load_state_dict, |
|
load_state_dict_into_model, |
|
load_states_into_optimizer, |
|
save_config_file, |
|
save_param_groups, |
|
save_state_dict, |
|
save_state_dict_shards, |
|
sharded_optimizer_loading_epilogue, |
|
) |
|
from colossalai.interface import OptimizerWrapper |
|
from colossalai.moe.manager import MOE_MANAGER |
|
from colossalai.tensor.moe_tensor.api import ( |
|
get_dp_group, |
|
get_dp_rank, |
|
get_dp_size, |
|
get_ep_group, |
|
get_ep_rank, |
|
get_ep_size, |
|
is_moe_tensor, |
|
) |
|
|
|
|
|
class MoECheckpointIO(HybridParallelCheckpointIO): |
|
def __init__( |
|
self, |
|
dp_group: ProcessGroup, |
|
pp_group: ProcessGroup, |
|
tp_group: ProcessGroup, |
|
zero_stage: int, |
|
) -> None: |
|
assert zero_stage in [ |
|
0, |
|
1, |
|
2, |
|
], f"zero_stage should be 0 or 1 or 2, got {zero_stage}" |
|
super().__init__(dp_group, pp_group, tp_group, zero_stage) |
|
self.parallel = MOE_MANAGER.parallel |
|
|
|
def pre_load_model(self, model: nn.Module, state_dict: dict) -> dict: |
|
""" |
|
Preprocess state_dict before loading and slice the state_dict of MOE tensors. |
|
""" |
|
for name, param in state_dict.items(): |
|
if ".experts." in name: |
|
if name in dict(model.named_parameters()): |
|
model_param = dict(model.named_parameters())[name] |
|
if is_moe_tensor(model_param): |
|
ep_rank = get_ep_rank(model_param) |
|
ep_size = get_ep_size(model_param) |
|
expert_num = param.shape[0] // ep_size |
|
assert param.shape[0] % ep_size == 0 |
|
param = param[ep_rank * expert_num : (ep_rank + 1) * expert_num] |
|
state_dict[name] = param |
|
dist.barrier() |
|
return state_dict |
|
|
|
def _model_sharder( |
|
self, |
|
state_dict: nn.Module, |
|
prefix: str = "", |
|
keep_vars: bool = False, |
|
size_per_shard: int = 1024, |
|
) -> Iterator[Tuple[OrderedDict, int]]: |
|
# An internel method that breaks state_dict of model into shards within limited size. |
|
state_dict_sharder = StateDictSharder(size_per_shard) |
|
|
|
for name, param in state_dict.items(): |
|
if param is None: |
|
continue |
|
# Gather tensor pieces when using tensor parallel. |
|
param_ = gather_distributed_param(param, keep_vars=False) |
|
block, block_size = state_dict_sharder.append_param(prefix + name, param_) |
|
if block is not None: |
|
yield block, block_size |
|
|
|
# Return the last block in sharder. |
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size |
|
|
|
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool) -> None: |
|
state_dict = torch.load(checkpoint) |
|
state_dict = self.pre_load_model(model, state_dict) |
|
model.load_state_dict(state_dict, strict=strict if self.pp_size == 1 else False) |
|
|
|
def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False): |
|
""" |
|
Load sharded model with the given path to index file of checkpoint folder. |
|
|
|
Args: |
|
model (nn.Module): The model to be loaded. |
|
checkpoint_index_file (str): Path to the index file of checkpointing folder. |
|
strict (bool, optional): For name matching during loading state_dict. Defaults to False. |
|
This argument should be manually set to False since params on same device might be stored in different files. |
|
""" |
|
|
|
# Check whether the checkpoint uses safetensors. |
|
use_safetensors = False |
|
if "safetensors" in checkpoint_index_file.name: |
|
use_safetensors = True |
|
|
|
if use_safetensors and not is_safetensors_available(): |
|
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.") |
|
|
|
# Read checkpoint index file. |
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file) |
|
ckpt_root_path = ckpt_index_file.root_path |
|
weight_map = ckpt_index_file.weight_map |
|
strict = False |
|
|
|
# Load params & buffers to model. |
|
# Keep a record of loaded files so that file will not be repeatedly loaded. |
|
loaded_file = set() |
|
|
|
def _load(name: str): |
|
if name not in weight_map: |
|
raise ValueError(f"{name} is not stored in checkpoint, please check your checkpointing configuration!") |
|
filename = weight_map[name] |
|
|
|
# If this param/buffer has been loaded before, directly return. |
|
if filename in loaded_file: |
|
return |
|
|
|
file_path = os.path.join(ckpt_root_path, filename) |
|
state_dict = load_shard_state_dict(Path(file_path), use_safetensors) |
|
state_dict = self.pre_load_model(model, state_dict) |
|
missing_keys = [] |
|
|
|
load_state_dict_into_model( |
|
model, |
|
state_dict, |
|
missing_keys=missing_keys, |
|
strict=strict, |
|
load_sub_module=True, |
|
) |
|
loaded_file.add(filename) |
|
|
|
# Load parameters. |
|
for name, _ in model.named_parameters(): |
|
_load(name) |
|
|
|
if self.verbose: |
|
logging.info(f"The model has been successfully loaded from sharded checkpoint: {ckpt_root_path}.") |
|
|
|
def pre_save_model(self, model: nn.Module) -> dict: |
|
state_dict = model.state_dict() |
|
for name, param in model.named_parameters(): |
|
if ".experts." in name and is_moe_tensor(param): |
|
ep_group = get_ep_group(param) |
|
ep_rank = get_ep_rank(param) |
|
ep_size = get_ep_size(param) |
|
dp_rank = get_dp_rank(param) |
|
if dp_rank == 0: |
|
param = param.data.cuda() |
|
all_param = [torch.zeros_like(param) for _ in range(ep_size)] |
|
# gather param from every ep rank |
|
dist.all_gather(all_param, param, group=ep_group) |
|
if ep_rank == 0: |
|
all_param = torch.cat(all_param, dim=0) |
|
state_dict[name] = all_param.cpu() |
|
if self.pp_size > 1: |
|
if self.dp_rank == 0: |
|
out = [None for _ in range(self.pp_size)] |
|
dist.all_gather_object(out, state_dict, group=self.pp_group) |
|
if self.pp_rank == 0: |
|
new_state_dict = {} |
|
for o in out: |
|
new_state_dict.update(o) |
|
state_dict = new_state_dict |
|
dist.barrier() |
|
return state_dict |
|
|
|
def save_unsharded_model( |
|
self, |
|
model: nn.Module, |
|
checkpoint: str, |
|
gather_dtensor: bool, |
|
use_safetensors: bool, |
|
): |
|
state_dict = self.pre_save_model(model) |
|
if dist.get_rank() == 0: |
|
torch.save(state_dict, checkpoint) |
|
dist.barrier() |
|
|
|
def save_sharded_model( |
|
self, |
|
model: nn.Module, |
|
checkpoint: str, |
|
gather_dtensor: bool = True, |
|
prefix: Optional[str] = None, |
|
size_per_shard: int = 1024, |
|
use_safetensors: bool = False, |
|
) -> None: |
|
""" |
|
Save sharded model checkpoint under the given checkpointing path. |
|
The following files will be created under the path: |
|
- An index file (pytorch_model.bin.index.json) containing a map between model params/buffers and file names. |
|
- Multiple files that store state tensors of models. |
|
The filenames are in the form of "pytorch_model.<prefix>-000XX.bin" |
|
|
|
Args: |
|
model (nn.Module): Model on local device to be saved. |
|
checkpoint (str): Checkpointing path which should be a directory path. |
|
gather_dtensor (bool, optional): Whether to gather_dtensor, currently not used. Defaults to True. |
|
prefix (str, optional): Perfix of file to save. Defaults to None. |
|
size_per_shard (int, optional): Size per shard in MB. Defaults to 1024. |
|
use_safetensors (bool, optional): Whether to use safe tensors. Defaults to False. |
|
""" |
|
torch.cuda.empty_cache() |
|
if os.path.isfile(checkpoint): |
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") |
|
return |
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True) |
|
|
|
# Then collect the sharded parameters & buffers along tp_group. |
|
# Only devices with tp_rank == 0 are responsible for model saving. |
|
state_dict = self.pre_save_model(model) |
|
|
|
if dist.get_rank() == 0: |
|
state_dict_shard = self._model_sharder(state_dict, size_per_shard=size_per_shard) |
|
|
|
# Devices along the same dp_group share the same copies of model. |
|
# So only let the device with dp_rank == 0 save the model. |
|
if self.dp_rank != 0: |
|
return |
|
|
|
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors) |
|
index_file = CheckpointIndexFile(checkpoint) |
|
control_saving = self.tp_rank == 0 |
|
|
|
total_size = save_state_dict_shards( |
|
sharded_state_dict=state_dict_shard, |
|
checkpoint=checkpoint, |
|
index_file=index_file, |
|
base_filename=weights_name, |
|
is_master=control_saving, |
|
use_safetensors=use_safetensors, |
|
) |
|
if control_saving: |
|
index_file.append_meta_data("total_size", total_size) |
|
index_file.write_index_file(save_index_file) |
|
save_config_file(model, checkpoint) |
|
if self.verbose: |
|
logging.info( |
|
f"The model is split into checkpoint shards. " |
|
f"You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
dist.barrier() |
|
torch.cuda.empty_cache() |
|
|
|
# ======================================================== |
|
# Abstract methods for optimizer loading/saving implementation |
|
# ======================================================== |
|
|
|
def pre_load_optim( |
|
self, |
|
state: OrderedDict, |
|
working_param, |
|
current_shape: torch.Size, |
|
original_shape: torch.Size, |
|
device: torch.device, |
|
inplace: bool, |
|
) -> OrderedDict: |
|
""" |
|
With complete optimizer states of a specific parameter loaded from checkpoint, |
|
slice out the sharded optimizer states kept by current device. |
|
|
|
Args: |
|
state (OrderedDict): Complete optimizer states of a given parameter, loaded from checkpoint. |
|
current_shape (torch.Size): The size of parameter after sharding. |
|
original_shape (torch.Size): The size of parameter before sharding. |
|
device (torch.device): The destination device of loaded optimizer states. |
|
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state. |
|
|
|
Returns: |
|
OrderedDict: The sharded optimizer state of the given parameter. |
|
""" |
|
state_ = state if inplace else copy.deepcopy(state) |
|
is_moe_tensor_flag = is_moe_tensor(working_param) |
|
if is_moe_tensor_flag: |
|
ep_rank = get_ep_rank(working_param) |
|
ep_size = get_ep_size(working_param) |
|
|
|
for k, v in state_.items(): |
|
if isinstance(v, torch.Tensor) and k != "step": |
|
if is_moe_tensor_flag: |
|
with torch.no_grad(): |
|
expert_num = v.shape[0] // ep_size |
|
assert v.shape[0] % ep_size == 0 |
|
v = v[ep_rank * expert_num : (ep_rank + 1) * expert_num] |
|
else: |
|
# Shard state along data parallel group when using Zero. |
|
padding_size = (self.dp_size - v.numel() % self.dp_size) % self.dp_size |
|
with torch.no_grad(): |
|
v = v.flatten() |
|
if padding_size > 0: |
|
v = torch.nn.functional.pad(v, [0, padding_size]) |
|
slice_size = v.numel() // self.dp_size |
|
v = v.split(slice_size, dim=0)[self.dp_rank] |
|
|
|
state_[k] = v.detach().clone().to(device) |
|
|
|
return state_ |
|
|
|
def load_sharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint_index_file: str, prefix: str = ""): |
|
""" |
|
Load sharded optimizer with the given path to index file of checkpoint folder. |
|
|
|
Args: |
|
optimizer (OptimizerWrapper): The optimizer to be loaded. |
|
checkpoint_index_file (str): Path to the index file of checkpointing folder. |
|
prefix (str): Not used. |
|
""" |
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!" |
|
|
|
def _get_param_id_from_optimizer_param( |
|
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None, optimizer=None |
|
): |
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
elif hasattr(optimizer, "moe_master_to_working_map") and id(param) in optimizer.moe_master_to_working_map: |
|
working_param = optimizer.moe_master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
return optimizer.param_info["param2id"][id(working_param)] |
|
|
|
# id_map is a mapping from param ids kept by current pipeline, to their corresponding parameter objects. |
|
# When Zero is used, the mapped parameter objects should be fp32 master parameters. |
|
# IDs should be obtained through saved param2id mapping earlier saved in optimizer.param_info. |
|
id_map = {} |
|
master_to_working_map = optimizer.get_master_to_working_map() |
|
for pg in optimizer.optim.param_groups: |
|
for param in pg["params"]: |
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map, optimizer) |
|
id_map[param_id] = param |
|
|
|
# Read checkpoint index file. |
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file) |
|
ckpt_root_path = ckpt_index_file.root_path |
|
weight_map = ckpt_index_file.weight_map |
|
weight_map = {int(k): v for k, v in weight_map.items()} # convert saved id from str to int |
|
|
|
# Load param_groups |
|
param_group_path = ckpt_index_file.get_param_group_filename() |
|
if param_group_path is None: |
|
raise RuntimeError( |
|
f"Invalid index file path {checkpoint_index_file} for an optimizer. \ |
|
Lacking param group file under current directory." |
|
) |
|
saved_groups = torch.load(param_group_path) |
|
|
|
updated_groups = [] |
|
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups): |
|
# obtain updated param group |
|
new_pg = copy.deepcopy(saved_pg) |
|
new_pg["params"] = old_pg["params"] # The parameters in the same group shouldn't change. |
|
updated_groups.append(new_pg) |
|
# ep param group |
|
if len(optimizer.optim.param_groups) > len(saved_groups): |
|
new_pg = copy.deepcopy(saved_pg) |
|
new_pg["params"] = optimizer.optim.param_groups[-1]["params"] |
|
updated_groups.append(new_pg) |
|
optimizer.optim.__dict__.update({"param_groups": updated_groups}) |
|
|
|
# Load saved states to optimizer. |
|
# Keep a record of loaded files so that file will not be repeatedly loaded. |
|
loaded_file = set() |
|
for pg in optimizer.optim.param_groups: |
|
for param in pg["params"]: |
|
if param is None: |
|
continue |
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map, optimizer) |
|
if param_id not in weight_map: |
|
continue |
|
filename = weight_map[param_id] |
|
|
|
# If this param's states has been loaded before, directly return. |
|
if filename in loaded_file: |
|
continue |
|
|
|
file_path = os.path.join(ckpt_root_path, filename) |
|
state_dict = load_shard_state_dict(Path(file_path), use_safetensors=False) |
|
|
|
# Then shard the loaded optimizer states if using tp/zero. |
|
for pid, state in list(state_dict.items()): |
|
if pid in id_map: |
|
param = id_map[pid] |
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
elif ( |
|
hasattr(optimizer, "moe_master_to_working_map") |
|
and id(param) in optimizer.moe_master_to_working_map |
|
): |
|
working_param = optimizer.moe_master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
original_shape = optimizer.param_info["param2shape"][id(working_param)] |
|
sharded_state = self.pre_load_optim( |
|
state, |
|
working_param, |
|
current_shape=working_param.shape, |
|
original_shape=original_shape, |
|
device="cpu", |
|
inplace=True, |
|
) |
|
state_dict[pid] = sharded_state |
|
|
|
load_states_into_optimizer(optimizer.optim, state_dict, id_map, strict=True) |
|
loaded_file.add(filename) |
|
|
|
sharded_optimizer_loading_epilogue(optimizer.optim) |
|
if self.verbose and self.coordinator.is_master(): |
|
logging.info(f"The optimizer has been successfully loaded from sharded checkpoint: {ckpt_root_path}.") |
|
dist.barrier() |
|
|
|
def load_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str): |
|
""" |
|
Load optimizer from a file with given path. |
|
|
|
Args: |
|
optimizer (OptimizerWrapper): The optimizer to be loaded. |
|
checkpoint_index_file (str): Path to the checkpoint file. |
|
""" |
|
|
|
def _get_param_id_from_optimizer_param( |
|
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None |
|
): |
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
if id(working_param) in optimizer.param_info["param2id"]: |
|
return optimizer.param_info["param2id"][id(working_param)] |
|
else: |
|
None |
|
|
|
if self.coordinator.is_master(): |
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!") |
|
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!" |
|
|
|
# Complete optimizer state_dict loaded from checkpoint, need to be processed later. |
|
state_dict = load_state_dict(checkpoint) |
|
|
|
# Load param_groups. |
|
updated_groups = [] |
|
saved_groups = state_dict["param_groups"] |
|
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups): |
|
new_pg = copy.deepcopy(saved_pg) |
|
new_pg["params"] = old_pg["params"] # Only keep the parameters kept by current pipeline stage. |
|
updated_groups.append(new_pg) |
|
# ep extra group |
|
if MOE_MANAGER.parallel == "EP": |
|
new_pg = copy.deepcopy(saved_pg) |
|
new_pg["params"] = optimizer.optim.param_groups[-1][ |
|
"params" |
|
] # Only keep the parameters kept by current pipeline stage. |
|
for param in new_pg["params"]: |
|
param.data = param.data.to(torch.float32) |
|
updated_groups.append(new_pg) |
|
optimizer.optim.__dict__.update({"param_groups": updated_groups}) |
|
|
|
# Load saved states to optimizer. First discard those states not belonging to current pipeline stage. |
|
master_to_working_map = optimizer.get_master_to_working_map() |
|
id_map = {} |
|
for pg in optimizer.optim.param_groups: |
|
for param in pg["params"]: |
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map) |
|
if param_id is not None: |
|
id_map[param_id] = param |
|
load_states_into_optimizer(optimizer.optim, state_dict["state"], id_map, strict=True) |
|
|
|
# Then shard the loaded optimizer states if using tp/zero. |
|
for param, state in optimizer.optim.state.items(): |
|
if param is None: |
|
continue |
|
device = param.device |
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
original_shape = optimizer.param_info["param2shape"][id(working_param)] |
|
sharded_state = self.pre_load_optim( |
|
state, |
|
param, |
|
current_shape=working_param.shape, |
|
original_shape=original_shape, |
|
device=device, |
|
inplace=True, |
|
) |
|
optimizer.optim.state[param] = sharded_state |
|
sharded_optimizer_loading_epilogue(optimizer.optim) |
|
dist.barrier() |
|
|
|
def pre_save_optim( |
|
self, |
|
state: OrderedDict, |
|
param: torch.Tensor, |
|
inplace: bool, |
|
device: torch.device = torch.device("cpu"), |
|
) -> OrderedDict: |
|
""" |
|
With given parameter and its optimizer states, gather the complete optimizer state for saving. |
|
|
|
Args: |
|
state (OrderedDict): Optimizer states of given parameter, might be distributed among tp/dp group if using TP/Zero. |
|
param (torch.Tensor): The given parameter. It should be working_param when using Zero. |
|
original_shape (torch.Size): The size of parameter before sharding. |
|
dp_group (ProcessGroup): The process group of data parallel. |
|
tp_group (ProcessGroup): The process group of tensor parallel. |
|
use_zero (bool): Whether Zero is used. |
|
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state. |
|
device (torch.device): The destination device of loaded optimizer states. Defaults to torch.device('cpu'). |
|
|
|
Returns: |
|
OrderedDict: The complete optimizer state of given parameter. |
|
""" |
|
if is_moe_tensor(param): |
|
moe_dp_group = get_dp_group(param) |
|
moe_dp_size = get_dp_size(param) |
|
moe_ep_group = get_ep_group(param) |
|
moe_ep_size = get_ep_size(param) |
|
state_ = state if inplace else copy.deepcopy(state) |
|
|
|
for k, v in state_.items(): |
|
if isinstance(v, torch.Tensor) and k != "step": |
|
# moe param |
|
if is_moe_tensor(param): |
|
# dp gather |
|
v = v.cuda() |
|
gather_tensor = [torch.zeros_like(v) for _ in range(moe_dp_size)] |
|
dist.all_gather(gather_tensor, v, group=moe_dp_group) |
|
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param) |
|
# ep gather |
|
gather_tensor = [torch.zeros_like(v) for _ in range(moe_ep_size)] |
|
dist.all_gather(gather_tensor, v, group=moe_ep_group) |
|
v = torch.cat(gather_tensor, dim=0) |
|
else: |
|
# global dp |
|
v = v.cuda() |
|
gather_tensor = [torch.zeros_like(v) for _ in range(dist.get_world_size(self.dp_group))] |
|
dist.all_gather(gather_tensor, v, group=self.dp_group) |
|
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param) |
|
|
|
state_[k] = v.detach().clone().to(device) |
|
|
|
return state_ |
|
|
|
def _optimizer_sharder( |
|
self, |
|
optimizer: OptimizerWrapper, |
|
size_per_shard: int = 1024, |
|
): |
|
# An internel method that breaks state_dict of optimizer into shards within limited size. |
|
|
|
state_dict_sharder = StateDictSharder(size_per_shard) |
|
param_info = optimizer.param_info |
|
master_to_working_map = optimizer.get_master_to_working_map() |
|
|
|
for param, state in optimizer.optim.state.items(): |
|
if param is None: |
|
continue |
|
|
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
elif hasattr(optimizer, "moe_master_to_working_map") and id(param) in optimizer.moe_master_to_working_map: |
|
working_param = optimizer.moe_master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
|
|
param_id = param_info["param2id"][id(working_param)] |
|
state_ = self.pre_save_optim( |
|
state, |
|
working_param, |
|
inplace=False, |
|
device=torch.device("cuda"), |
|
) |
|
|
|
block, block_size = state_dict_sharder.append_optim_state(param_id, state_) |
|
if block is not None: |
|
yield block, block_size |
|
|
|
# Return the last block in sharder. |
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size |
|
|
|
def save_sharded_optimizer( |
|
self, |
|
optimizer: OptimizerWrapper, |
|
checkpoint: str, |
|
gather_dtensor: bool = True, |
|
prefix: Optional[str] = None, |
|
size_per_shard: int = 1024, |
|
): |
|
""" |
|
Save sharded optimizer checkpoint under the given checkpointing path. |
|
The following files will be created under the path: |
|
- An index file (pytorch_optim.bin.index.json) containing a map between optimizer states and file names |
|
- A group file (pytorch_optim_group.bin) recording information of param_groups |
|
- Multiple files that store state tensors of optimizers. |
|
If pipeline parallelism is used, the filenames are in the form of "pytorch_optim.<prefix>-stage-000XX-shard-000XX.bin". |
|
If pipeline parallelism is not used, "pytorch_optim.<prefix>-000XX.bin" |
|
|
|
Args: |
|
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict |
|
checkpoint (str): Path to save optimizer state_dict |
|
gather_dtensor (bool): Whether to gather_dtensor, not used |
|
prefix (str): Perfix of file to save |
|
size_per_shard (int): Max file size of each file shard that store state tensors |
|
""" |
|
torch.cuda.empty_cache() |
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!" |
|
if os.path.isfile(checkpoint): |
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") |
|
return |
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True) |
|
|
|
# Devices along the same dp_group share the same copies of states when zero is not used. |
|
# In this case only let the device with dp_rank == 0 save the model. |
|
if not self.use_zero and self.dp_rank != 0: |
|
return |
|
|
|
# Then collect the sharded states along dp_group(if using zero)/tp_group. |
|
# Only devices with (dp_rank == 0 and tp_rank == 0) are responsible for states saving. |
|
state_dict_shard = self._optimizer_sharder( |
|
optimizer, |
|
size_per_shard=size_per_shard, |
|
) |
|
states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix) |
|
index_file = CheckpointIndexFile(checkpoint) |
|
control_saving = self.dp_rank == 0 and self.tp_rank == 0 |
|
if self.pp_size == 1: |
|
# When pipeline is not used, save the optimizer shards as in general checkpointIO |
|
total_size = save_state_dict_shards( |
|
sharded_state_dict=state_dict_shard, |
|
checkpoint=checkpoint, |
|
index_file=index_file, |
|
base_filename=states_name, |
|
is_master=control_saving, |
|
) |
|
|
|
if control_saving: |
|
# Store param groups. |
|
index_file.append_meta_data("param_groups", param_group_file) |
|
group_file_path = os.path.join(checkpoint, param_group_file) |
|
save_param_groups(optimizer.param_info, group_file_path) |
|
# Store index file. |
|
index_file.append_meta_data("total_size", total_size) |
|
index_file.write_index_file(save_index_file) |
|
if self.verbose and self.coordinator.is_master(): |
|
logging.info( |
|
f"The optimizer is going to be split to checkpoint shards. " |
|
f"You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
|
|
else: |
|
# When pipeline is used, each stage produces its own shard files and index files. |
|
# Index files belonging to each stage are saved under a temporary folder ./tmp_index_files/ |
|
# After all the state_dicts have been saved, the master rank integrates all the index files into one final index file and deletes the tmp folder. |
|
|
|
final_index_file_path = copy.deepcopy(save_index_file) |
|
tmp_index_file_folder = os.path.join(checkpoint, "tmp_index_files") |
|
Path(tmp_index_file_folder).mkdir(parents=True, exist_ok=True) |
|
|
|
# Manage filenames of sharded weights and index file for each pipeline stage. |
|
states_name = states_name.replace(".bin", f"-stage-{self.pp_rank+1:05d}-shard.bin") |
|
save_index_file = save_index_file.replace(".json", f"-stage-{self.pp_rank+1:05d}.json") |
|
save_index_file = os.path.join("tmp_index_files", save_index_file) |
|
|
|
total_size = save_state_dict_shards( |
|
sharded_state_dict=state_dict_shard, |
|
checkpoint=checkpoint, |
|
index_file=index_file, |
|
base_filename=states_name, |
|
is_master=control_saving, |
|
use_pp_format=True, |
|
) |
|
|
|
if control_saving: |
|
assert ( |
|
self.dp_rank == 0 and self.tp_rank == 0 |
|
), "The saving process should have both dp_rank and tp_rank as 0." |
|
index_file.append_meta_data("total_size", total_size) |
|
index_file.write_index_file(save_index_file) |
|
else: |
|
return |
|
|
|
dist.barrier(self.pp_group) |
|
|
|
# The global master rank integrates the index files and clean the folder. |
|
if self.pp_rank == 0: |
|
final_index_file = CheckpointIndexFile(checkpoint) |
|
final_index_file.append_meta_data("total_size", 0) |
|
|
|
for filename in os.listdir(tmp_index_file_folder): |
|
stage_index_file = CheckpointIndexFile.from_file(os.path.join(tmp_index_file_folder, filename)) |
|
final_index_file.metadata["total_size"] += stage_index_file.metadata["total_size"] |
|
for param_id, state_filename in stage_index_file.weight_map.items(): |
|
final_index_file.append_weight_map(param_id, state_filename) |
|
|
|
# Store param groups. |
|
final_index_file.append_meta_data("param_groups", param_group_file) |
|
group_file_path = os.path.join(checkpoint, param_group_file) |
|
save_param_groups(optimizer.param_info, group_file_path) |
|
|
|
final_index_file.write_index_file(final_index_file_path) |
|
rmtree(tmp_index_file_folder) |
|
|
|
if self.verbose and self.coordinator.is_master(): |
|
logging.info( |
|
f"The model is split into checkpoint shards. " |
|
f"You can find where each parameters has been saved in the " |
|
f"index located at {final_index_file_path}." |
|
) |
|
torch.cuda.empty_cache() |
|
|
|
def save_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool): |
|
""" |
|
Save optimizer state dict to a file with given path. |
|
|
|
Args: |
|
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict. |
|
checkpoint (str): Path to save optimizer state_dict. |
|
gather_dtensor (bool): Whether to gather_dtensor, not used. |
|
""" |
|
if self.coordinator.is_master(): |
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!") |
|
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!" |
|
|
|
# optimizer states of parameters kept by local device('s pipeline stage) |
|
local_states = dict() |
|
|
|
for param, state in optimizer.optim.state.items(): |
|
if param is None: |
|
continue |
|
|
|
# working param is needed for obtaining correct param_id |
|
master_to_working_map = optimizer.get_master_to_working_map() |
|
if master_to_working_map is not None and id(param) in master_to_working_map: |
|
working_param = master_to_working_map[id(param)] |
|
else: |
|
working_param = param |
|
|
|
# gather complete state from tp shards & dp shards |
|
param_id = optimizer.param_info["param2id"][id(working_param)] |
|
local_states[param_id] = self.pre_save_optim( |
|
state, |
|
working_param, |
|
inplace=False, |
|
device=torch.device("cuda"), |
|
) |
|
|
|
if self.pp_size == 1: |
|
# When pipeline is not used, let master rank directly save the collected state_dict. |
|
state_dict = {"param_groups": optimizer.optim.param_groups, "state": local_states} |
|
if self.coordinator.is_master(): |
|
save_state_dict(state_dict, checkpoint, use_safetensors=False) |
|
else: |
|
# When pipeline is used, first collect state_dict from every pipeline stage, then save the complete state_dict. |
|
states_list = [None for _ in range(self.pp_size)] |
|
dist.barrier(self.pp_group) |
|
dist.all_gather_object(states_list, local_states, self.pp_group) |
|
|
|
# Only the master rank do the saving. |
|
if self.coordinator.is_master(): |
|
state_dict = {"param_groups": optimizer.optim.param_groups, "state": dict()} |
|
for _states in states_list: |
|
state_dict["state"].update(_states) |
|
save_state_dict(state_dict, checkpoint, use_safetensors=False) |
|
dist.barrier()
|
|
|