You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/mixtral.py

362 lines
15 KiB

import warnings
from functools import partial
from typing import Callable, Dict, List, Union
import torch.nn as nn
from torch import Tensor
from torch.nn import Module
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM, MixtralModel
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col
from colossalai.shardformer.layer.embedding import PaddingEmbedding, VocabParallelEmbedding1D
from colossalai.shardformer.layer.linear import Linear1D_Row
from colossalai.shardformer.modeling.mixtral import (
EPMixtralSparseMoeBlock,
MixtralPipelineForwards,
get_mixtral_flash_attention_forward,
get_mixtral_flash_attention_model_forward,
)
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["MixtralPolicy", "MixtralForCausalLMPolicy"]
class MixtralPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
self.tie_weight = self.tie_weight_check()
self.origin_attn_implement = self.model.config._attn_implementation
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
from transformers.models.mixtral.modeling_mixtral import (
MixtralAttention,
MixtralDecoderLayer,
MixtralFlashAttention2,
MixtralModel,
MixtralSdpaAttention,
)
ATTN_IMPLEMENTATION = {
"eager": MixtralAttention,
"flash_attention_2": MixtralFlashAttention2,
"sdpa": MixtralSdpaAttention,
}
policy = {}
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
sp_partial_derived = sp_mode in ["split_gather", "ring"]
if sp_mode == "all_to_all":
decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["num_key_value_heads"] = self.model.config.num_key_value_heads // sp_size
policy[attn_cls] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_sequence_parallelism:
if self.pipeline_stage_manager is not None:
# NOTE: we are replacing model forward for both sequence parallelism and pipeline parallelism
# if both are enabled, one of them will be ignored
raise NotImplementedError("Sequence parallelism is not supported with pipeline parallelism.")
self.append_or_create_method_replacement(
description={
"forward": get_mixtral_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
},
policy=policy,
target_key=attn_cls,
)
self.append_or_create_method_replacement(
description={
"forward": get_mixtral_flash_attention_model_forward(
self.shard_config,
sp_mode=sp_mode,
sp_size=sp_size,
sp_group=sp_group,
),
},
policy=policy,
target_key=MixtralModel,
)
embedding_cls = None
if self.shard_config.enable_tensor_parallelism:
embedding_cls = VocabParallelEmbedding1D
else:
if self.tie_weight:
embedding_cls = PaddingEmbedding
if self.shard_config.enable_tensor_parallelism:
# tensor parallelism for non-moe params
assert (
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of attention heads must be divisible by tensor parallel size."
assert (
self.model.config.num_key_value_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of key_value heads must be divisible by tensor parallel size."
decoder_attribute_replacement = {
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"self_attn.num_key_value_heads": self.model.config.num_key_value_heads
// self.shard_config.tensor_parallel_size,
}
policy[MixtralDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription( # or replicate?
suffix="block_sparse_moe.gate", target_module=Linear1D_Col, kwargs={"gather_output": True}
),
],
)
if embedding_cls is not None:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=embedding_cls,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
),
policy=policy,
target_key=MixtralModel,
)
if self.shard_config.ep_group:
# expert parallel
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="block_sparse_moe",
target_module=EPMixtralSparseMoeBlock,
kwargs={
"ep_group": self.shard_config.ep_group,
"tp_group": self.shard_config.tensor_parallel_process_group,
"moe_dp_group": self.shard_config.moe_dp_group,
},
)
],
policy=policy,
target_key=MixtralDecoderLayer,
)
# optimization configuration
if self.shard_config.enable_fused_normalization:
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=FusedRMSNorm,
kwargs={"sp_partial_derived": sp_partial_derived},
),
SubModuleReplacementDescription(
suffix="post_attention_layernorm",
target_module=FusedRMSNorm,
kwargs={"sp_partial_derived": sp_partial_derived},
),
],
policy=policy,
target_key=MixtralDecoderLayer,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="norm",
target_module=FusedRMSNorm,
kwargs={"sp_partial_derived": sp_partial_derived},
),
policy=policy,
target_key=MixtralModel,
)
if self.shard_config.enable_flash_attention:
warnings.warn("Flash attention is natively supported in transformers, will ignore the flag.")
self.shard_config.enable_flash_attention = False
return policy
def postprocess(self):
return self.model
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if self.pipeline_stage_manager:
if self.shard_config.enable_sequence_parallelism:
# NOTE: we are replacing model forward for both sequence parallelism and pipeline parallelism
# if both are enabled, one of them will be ignored
raise NotImplementedError("Pipeline parallelism is not supported with sequence parallelism.")
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "MixtralModel":
module = self.model
else:
module = self.model.model
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
stage_index = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=model_cls
)
return
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == "MixtralModel":
module = self.model
else:
module = self.model.model
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
if stage_manager.is_first_stage():
held_layers.append(module.embed_tokens)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.norm)
return held_layers
class MixtralModelPolicy(MixtralPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
if self.pipeline_stage_manager:
# set None as default
self.set_pipeline_forward(
model_cls=MixtralModel,
new_forward=MixtralPipelineForwards.mixtral_model_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
held_layers = super().get_held_layers()
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in mixtral model"""
return []
class MixtralForCausalLMPolicy(MixtralPolicy):
def module_policy(self):
policy = super().module_policy()
# TODO: assign pg mesh from plugin to all modules
if self.shard_config.enable_tensor_parallelism:
# add a new item for casual lm
new_item = {
MixtralForCausalLM: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True),
)
]
)
}
policy.update(new_item)
if self.pipeline_stage_manager:
# set None as default
self.set_pipeline_forward(
model_cls=MixtralForCausalLM,
new_forward=MixtralPipelineForwards.mixtral_for_causal_lm_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage():
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
mixtral_model = self.model.model
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if (
id(mixtral_model.embed_tokens.weight) == id(self.model.lm_head.weight)
and self.pipeline_stage_manager.num_stages > 1
):
# tie weights
return [
{
0: mixtral_model.embed_tokens.weight,
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight,
}
]
return []
class MixtralForSequenceClassificationPolicy(MixtralPolicy):
def module_policy(self):
from transformers import MixtralForSequenceClassification
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
# add a new item for sequence classification
new_item = {
MixtralForSequenceClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="score", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
)
]
)
}
policy.update(new_item)
if self.pipeline_stage_manager:
raise NotImplementedError
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(self.model.score)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in mixtral for sequence classification model"""
return []