mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
10 KiB
253 lines
10 KiB
from copy import deepcopy
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PreTrainedTokenizer
|
|
from transformers.generation.utils import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def get_prompt_template(
|
|
input_query: str,
|
|
history: List[Dict] = None,
|
|
roles: list = ["", "Human", "Assistant"],
|
|
) -> str:
|
|
"""
|
|
Generates a prompt template for chat models based on input and history.
|
|
|
|
Args:
|
|
input_query (str): User's current input query.
|
|
history (List[Dict], optional): List of past conversations, each a dict with 'role' and 'message'.
|
|
roles (list): Specifies the roles in the conversation, defaults to ["", "Human", "Assistant"].
|
|
|
|
Returns:
|
|
str: A formatted prompt including the input query and history.
|
|
"""
|
|
prompt = ""
|
|
if history is None:
|
|
new_history = []
|
|
else:
|
|
new_history = deepcopy(history)
|
|
|
|
new_history.append({"role": roles[1], "message": input_query.strip()})
|
|
new_history.append({"role": roles[2], "message": None})
|
|
|
|
for _, item in enumerate(new_history):
|
|
role = item.get("role")
|
|
message = item.get("message")
|
|
if role == roles[0]:
|
|
prompt += f"<s>{message}\n\n"
|
|
else:
|
|
if message:
|
|
prompt += f"{role}: <s>{message}</s>"
|
|
else:
|
|
prompt += f"{role}: <s>"
|
|
return prompt
|
|
|
|
|
|
@torch.inference_mode()
|
|
def streaming_chat(
|
|
model: Any,
|
|
tokenizer: PreTrainedTokenizer,
|
|
input_query: str,
|
|
history: List[Dict] = None,
|
|
roles: list = ["", "Human", "Assistant"],
|
|
past_key_values: Tuple[Tuple[torch.FloatTensor, Any], Any] = None,
|
|
temperature: float = 0.8,
|
|
top_p: float = 0.95,
|
|
top_k: int = 50,
|
|
do_sample: bool = True,
|
|
length_penalty: float = 1.2,
|
|
max_new_tokens: int = 512,
|
|
logits_processor: LogitsProcessorList = None,
|
|
return_past_key_values: bool = False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Streaming chat responses generation with a given model and tokenizer.
|
|
|
|
Args:
|
|
model (Any): The language model to generate responses.
|
|
tokenizer (PreTrainedTokenizer): Tokenizer compatible with the model, used for encoding inputs and decoding responses.
|
|
input_query (str): The current user input to respond to.
|
|
history (List[Dict], optional): A list of past conversations, where each conversation is a dictionary with keys 'role' and 'message'.
|
|
roles (list): Roles involved in the conversation, defaults to ["", "Human", "Assistant"].
|
|
past_key_values (Tuple[Tuple[torch.FloatTensor, Any], Any], optional): Past key values for incremental decoding.
|
|
temperature (float): The temperature value for token sampling, defaults to 0.8.
|
|
top_p (float): Nucleus sampling probability threshold, defaults to 0.95.
|
|
top_k (int): Top-K filtering threshold, defaults to 50.
|
|
do_sample (bool): Whether to sample responses, defaults to True.
|
|
length_penalty (float): Penalty for response length, defaults to 1.2.
|
|
max_new_tokens (int): Maximum number of new tokens to generate, defaults to 512.
|
|
logits_processor (LogitsProcessorList, optional): Custom logits processors, defaults to None.
|
|
return_past_key_values (bool): Whether to return past key values for further incremental decoding, defaults to False.
|
|
**kwargs: Additional keyword arguments for generation.
|
|
|
|
Yields:
|
|
Tuple[str, List[Dict], Optional[Tuple[Tuple[torch.FloatTensor, Any], Any]]]: A tuple containing the generated response, updated history, and
|
|
optionally the updated past key values if `return_past_key_values` is True.
|
|
|
|
Ensures padding is on the left side for the tokenizer.
|
|
"""
|
|
assert tokenizer.padding_side == "left", "Current generation only supports left padding."
|
|
if history is None:
|
|
history = []
|
|
if logits_processor is None:
|
|
logits_processor = LogitsProcessorList()
|
|
|
|
generation_kwargs = {
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"top_k": top_k,
|
|
"do_sample": do_sample,
|
|
"max_new_tokens": max_new_tokens,
|
|
"length_penalty": length_penalty,
|
|
"use_cache": True,
|
|
**kwargs,
|
|
}
|
|
|
|
prompt_str = get_prompt_template(input_query, history=history, roles=roles)
|
|
|
|
eos_token_id = [tokenizer.eos_token_id]
|
|
inputs = tokenizer(prompt_str, return_tensors="pt").to(model.device)
|
|
history.append({"role": roles[1], "message": input_query.strip()})
|
|
history.append({"role": roles[2], "message": None})
|
|
|
|
for outputs in stream_generate(
|
|
model,
|
|
**inputs,
|
|
past_key_values=past_key_values,
|
|
eos_token_id=eos_token_id,
|
|
return_past_key_values=return_past_key_values,
|
|
**generation_kwargs,
|
|
):
|
|
if return_past_key_values:
|
|
outputs, past_key_values = outputs
|
|
|
|
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) : -1]
|
|
response = tokenizer.decode(outputs)
|
|
|
|
history[-1]["message"] = response.strip()
|
|
if return_past_key_values:
|
|
yield response, history, past_key_values
|
|
else:
|
|
yield response, history
|
|
|
|
|
|
@torch.inference_mode()
|
|
def stream_generate(
|
|
model: Any,
|
|
input_ids: torch.Tensor,
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
|
return_past_key_values: bool = False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Generates sequences of token ids using the specified model and generation parameters.
|
|
Adapted from https://huggingface.co/THUDM/chatglm3-6b/blob/main/modeling_chatglm.py
|
|
|
|
Args:
|
|
model (Any): The model used for generating sequences of token ids.
|
|
input_ids (torch.Tensor): The sequence used as a prompt for the generation or as model inputs to the encoder.
|
|
generation_config (Optional[GenerationConfig]): The generation configuration to be used as base parametrization for the generation call.
|
|
logits_processor (Optional[LogitsProcessorList]): Custom logits processors that complement the default logits processors built from arguments
|
|
and generation config.
|
|
stopping_criteria (Optional[StoppingCriteriaList]): Custom stopping criteria that complement the default stopping criteria built from arguments
|
|
and a generation config.
|
|
prefix_allowed_tokens_fn (Optional[Callable[[int, torch.Tensor], List[int]]]): Function to constrain token generation.
|
|
return_past_key_values (bool): Whether to return past key values for further incremental decoding, defaults to False.
|
|
**kwargs: Additional parameters for model generation.
|
|
|
|
Yields:
|
|
torch.Tensor: The generated token IDs, updated after each generation step.
|
|
Optional[Tuple[Tuple[torch.FloatTensor, Any], Any]]: The past key values, returned if `return_past_key_values` is True, defaults to False.
|
|
"""
|
|
input_ids_len = input_ids.size(1)
|
|
|
|
if generation_config is None:
|
|
generation_config = model.generation_config
|
|
generation_config = deepcopy(generation_config)
|
|
model_kwargs = generation_config.update(**kwargs)
|
|
|
|
eos_token_id = generation_config.eos_token_id
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
|
|
|
if generation_config.max_new_tokens is not None:
|
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_len
|
|
|
|
if input_ids_len >= generation_config.max_length:
|
|
input_ids_string = "decoder_input_ids" if model.config.is_encoder_decoder else "input_ids"
|
|
logger.warning(
|
|
f"Input length of {input_ids_string} is {input_ids_len}, but `max_length` is set to"
|
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
|
" increasing `max_new_tokens`."
|
|
)
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
|
|
|
# prepare distribution pre_processing samplers
|
|
logits_processor = model._get_logits_processor(
|
|
generation_config=generation_config,
|
|
input_ids_seq_length=input_ids_len,
|
|
encoder_input_ids=input_ids,
|
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
logits_processor=logits_processor,
|
|
)
|
|
|
|
# prepare stopping criteria
|
|
stopping_criteria = model._get_stopping_criteria(
|
|
generation_config=generation_config, stopping_criteria=stopping_criteria
|
|
)
|
|
|
|
logits_warper = model._get_logits_warper(generation_config)
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
|
scores = None
|
|
|
|
while True:
|
|
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
|
# forward pass to get next token
|
|
outputs = model(
|
|
**model_inputs,
|
|
return_dict=True,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
)
|
|
|
|
# NOTE: this is correct only in left padding mode
|
|
# pre-process distribution
|
|
next_token_logits = outputs.logits[:, -1, :]
|
|
next_token_scores = logits_processor(input_ids, next_token_logits)
|
|
next_token_scores = logits_warper(input_ids, next_token_scores)
|
|
|
|
# sample
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
|
if generation_config.do_sample:
|
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
|
else:
|
|
next_tokens = torch.argmax(probs, dim=-1)
|
|
|
|
# update generated ids, model inputs, and length for next step
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
model_kwargs = model._update_model_kwargs_for_generation(
|
|
outputs, model_kwargs, is_encoder_decoder=model.config.is_encoder_decoder
|
|
)
|
|
unfinished_sequences = unfinished_sequences.mul(
|
|
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
|
)
|
|
|
|
if return_past_key_values:
|
|
yield input_ids, outputs.past_key_values
|
|
else:
|
|
yield input_ids
|
|
# stop when each sentence is finished, or if exceed the maximum length
|
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
|
break
|