You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/builder/builder.py

260 lines
9.0 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import inspect
from collections.abc import Iterable
from colossalai.registry import *
def build_from_config(module, config: dict):
"""Returns an object of :class:`module` constructed from `config`.
Args:
module: A python or user-defined class
config: A python dict containing information used in the construction of the return object
Returns: An ``object`` of interest
Raises:
AssertionError: Raises an AssertionError if `module` is not a class
"""
assert inspect.isclass(module), 'module must be a class'
return module(**config)
def build_from_registry(config, registry: Registry):
r"""Returns an object constructed from `config`, the type of the object
is specified by `registry`.
Note:
the `config` is used to construct the return object such as `LAYERS`, `OPTIMIZERS`
and other support types in `registry`. The `config` should contain
all required parameters of corresponding object. The details of support
types in `registry` and the `mod_type` in `config` could be found in
`registry <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/registry/__init__.py>`_.
Args:
config (dict or :class:`colossalai.context.colossalai.context.Config`): information
used in the construction of the return object.
registry (:class:`Registry`): A registry specifying the type of the return object
Returns:
A Python object specified by `registry`.
Raises:
Exception: Raises an Exception if an error occurred when building from registry.
"""
config_ = config.copy() # keep the original config untouched
assert isinstance(
registry, Registry), f'Expected type Registry but got {type(registry)}'
mod_type = config_.pop('type')
assert registry.has(
mod_type), f'{mod_type} is not found in registry {registry.name}'
try:
obj = registry.get_module(mod_type)(**config_)
except Exception as e:
print(
f'An error occurred when building {mod_type} from registry {registry.name}',
flush=True)
raise e
return obj
def build_layer(config):
"""Returns a layer object of :class:`nn.Module` constructed from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``LAYERS``.
Returns:
An object of :class:`torch.nn.Module`
"""
return build_from_registry(config, LAYERS)
def build_loss(config):
"""Returns a loss function object of :class:`torch.autograd.Function` constructed
from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``LOSSES``.
Returns:
An object of :class:`torch.nn.modules.loss._Loss`
"""
return build_from_registry(config, LOSSES)
def build_model(config):
"""Returns a model object of :class:`nn.Module` constructed from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``MODELS``.
Returns:
An object of :class:`torch.nn.Module`
"""
return build_from_registry(config, MODELS)
def build_dataset(config):
"""Returns a dataset object of :class:`torch.utils.data.Dataset` constructed
from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``DATASETS``.
Returns:
An object of :class:`torch.utils.data.Dataset`
"""
return build_from_registry(config, DATASETS)
def build_optimizer(config, model):
"""Returns an optimizer object of :class:`torch.optim.Optimizer` constructed from `config`,
'model' and 'params'.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``OPTIMIZERS``.
model (:class:`nn.Module`): A model containing parameters for the optimizer
Returns:
An object of :class:`torch.optim.Optimizer`
"""
config_ = config.copy()
config_['params'] = model.parameters()
return build_from_registry(config_, OPTIMIZERS)
def build_gradient_handler(config, model, optimizer):
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
`model` and `optimizer`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``GRADIENT_HANDLER``.
model (:class:`nn.Module`): A model containing parameters for the gradient handler
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the gradient handler
Returns:
An object of :class:`colossalai.engine.BaseGradientHandler`
"""
config_ = config.copy()
config_['model'] = model
config_['optimizer'] = optimizer
return build_from_registry(config_, GRADIENT_HANDLER)
def build_hooks(config, trainer):
"""Returns a hook object of :class:`BaseHook` constructed from `config` and `trainer`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``HOOKS``.
Returns:
An object of :class:`colossalai.trainer.hooks.BaseHook`
"""
config_ = config.copy()
config_['trainer'] = trainer
return build_from_registry(config_, HOOKS)
def build_ophooks(config):
"""Returns a hook object of :class:`BaseOpHook` constructed from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``OPHOOKS``.
Returns:
An object of :class:`colossalai.trainer.hooks.BaseOpHook`
"""
config_ = config.copy()
return build_from_registry(config_, OPHOOKS)
def build_transform(config):
"""Returns a transformation object of :class:`torchvision.transforms` constructed
from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``TRANSFORMS``.
Returns:
An object of :class:`torchvision.transforms`
"""
return build_from_registry(config, TRANSFORMS)
def build_data_sampler(config, dataset):
"""Returns a data sampler object of :class:`colossalai.nn.data.sampler.BaseSampler`
constructed from `config`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``DATA_SAMPLERS``.
dataset (:class:`torch.utils.data.Dataset`): An object of
:class:`torch.utils.data.Dataset` containing information
used in the construction of the return object
Returns:
An object of :class:`colossalai.utils.data_sampler.BaseSampler`
"""
config_ = config.copy()
config_['dataset'] = dataset
return build_from_registry(config_, DATA_SAMPLERS)
def build_lr_scheduler(config, optimizer):
"""Returns a learning rate scheduler object of :class:`torch.optim.lr_scheduler`
constructed from `config`, `optimizer`, `total_steps` and `num_steps_per_epoch`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``lr_schedule``.
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing
parameters for the learning rate scheduler.
Returns:
An object of :class:`torch.optim.lr_scheduler`
"""
config_ = config.copy()
config_['optimizer'] = optimizer
return build_from_registry(config_, LR_SCHEDULERS)
def build_schedule(config):
"""Returns a schedule of :class:`colossalai.engine.schedule.BaseSchedule`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``Schedule``.
Returns:
An object of :class:`colossalai.engine.schedule.BaseSchedule`
"""
return build_from_registry(config, SCHEDULE)