You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/images/resnet
Hongxin Liu 7f8b16635b
[misc] refactor launch API and tensor constructor (#5666)
7 months ago
..
.gitignore
README.md [gemini] improve compatibility and add static placement policy (#4479) 1 year ago
eval.py [misc] update pre-commit and run all files (#4752) 1 year ago
requirements.txt [misc] update pre-commit and run all files (#4752) 1 year ago
test_ci.sh
train.py [misc] refactor launch API and tensor constructor (#5666) 7 months ago

README.md

Train ResNet on CIFAR-10 from scratch

🚀 Quick Start

This example provides a training script and an evaluation script. The training script provides an example of training ResNet on CIFAR10 dataset from scratch.

  • Training Arguments

    • -p, --plugin: Plugin to use. Choices: torch_ddp, torch_ddp_fp16, low_level_zero. Defaults to torch_ddp.
    • -r, --resume: Resume from checkpoint file path. Defaults to -1, which means not resuming.
    • -c, --checkpoint: The folder to save checkpoints. Defaults to ./checkpoint.
    • -i, --interval: Epoch interval to save checkpoints. Defaults to 5. If set to 0, no checkpoint will be saved.
    • --target_acc: Target accuracy. Raise exception if not reached. Defaults to None.
  • Eval Arguments

    • -e, --epoch: select the epoch to evaluate
    • -c, --checkpoint: the folder where checkpoints are found

Install requirements

pip install -r requirements.txt

Train

The folders will be created automatically.

# train with torch DDP with fp32
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp32

# train with torch DDP with mixed precision training
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp16 -p torch_ddp_fp16

# train with low level zero
colossalai run --nproc_per_node 2 train.py -c ./ckpt-low_level_zero -p low_level_zero

Eval

# evaluate fp32 training
python eval.py -c ./ckpt-fp32 -e 80

# evaluate fp16 mixed precision training
python eval.py -c ./ckpt-fp16 -e 80

# evaluate low level zero training
python eval.py -c ./ckpt-low_level_zero -e 80

Expected accuracy performance will be:

Model Single-GPU Baseline FP32 Booster DDP with FP32 Booster DDP with FP16 Booster Low Level Zero Booster Gemini
ResNet-18 85.85% 84.91% 85.46% 84.50% 84.60%

Note: the baseline is adapted from the script to use torchvision.models.resnet18