ColossalAI/tests/test_shardformer/test_model/test_shard_mixtral.py

235 lines
7.6 KiB
Python

import os
import shutil
from copy import deepcopy
from typing import Tuple
import pytest
import torch
import torch.distributed
import torch.distributed as dist
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralModel
import colossalai
from colossalai.booster.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import assert_loose_close, check_model_equal
NUM_BATCH = 8
NUM_TOK_PER_BATCH, NUM_EXPERTS = 64, 4
NUM_LAYERS = 4
HIDDEN_SIZE_PER_HEAD = 4
NUM_HEADS = 8
TOP_K = 2
def run_mixtral_commom(config: Tuple[int, ...]):
Randomizer.reset_index()
stage, ep_size, pp_size, tp_size, sp_size = config
world_size = dist.get_world_size()
rank = dist.get_rank()
dtype, precision = torch.bfloat16, "bf16"
torch.cuda.set_device(dist.get_rank())
plugin = MoeHybridParallelPlugin(
pp_size=pp_size,
num_microbatches=pp_size,
tp_size=tp_size,
sp_size=sp_size,
ep_size=ep_size,
zero_stage=stage,
enable_sequence_parallelism=sp_size > 1,
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
overlap_communication=False,
initial_scale=1,
precision=precision,
find_unused_parameters=True,
)
dp_size = plugin.dp_size
booster = Booster(plugin=plugin)
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
config = MixtralConfig(
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
num_hidden_layers=NUM_LAYERS,
num_attention_heads=NUM_HEADS,
num_key_value_heads=NUM_HEADS,
num_local_experts=NUM_EXPERTS,
num_experts_per_tok=TOP_K,
attn_implementation="flash_attention_2",
)
# init model with the same seed
seed_all(10086)
torch_model = MixtralModel(config).to(dtype).cuda()
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
parallel_model = deepcopy(torch_model)
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
# create different input along dp axis
seed_all(1453 + rank)
torch_model.train()
parallel_model.train()
for _ in range(2):
# gen random input
input_embeddings = torch.rand(
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
).cuda()
dist.all_reduce(
input_embeddings, group=plugin.pp_group
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
# run the model with hybrid parallel
if booster.plugin.stage_manager is not None:
# for test with pp
data_iter = iter([{"inputs_embeds": input_embeddings}])
sharded_output = booster.execute_pipeline(
data_iter,
parallel_model,
lambda x, y: x.last_hidden_state.mean(),
parallel_optimizer,
return_loss=True,
return_outputs=True,
)
if booster.plugin.stage_manager.is_last_stage():
parallel_output = sharded_output["loss"]
else:
parallel_output = torch.tensor(12345.0, device="cuda")
# broadcast along pp axis
dist.broadcast(
parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[-1], group=plugin.pp_group
)
else:
# for test without pp
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
parallel_optimizer.backward(parallel_output)
parallel_optimizer.step()
parallel_optimizer.zero_grad()
dist.all_reduce(parallel_output, group=plugin.dp_group)
# ===================================================================================
# run normal model with all dp(different) inputs
all_inputs = [torch.empty_like(input_embeddings) for _ in range(dp_size)]
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
torch_output_sum = 0
for input_data_ in all_inputs:
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
torch_output.backward()
torch_output_sum += torch_output.detach()
# avg dp grads follows zero optimizer
for p in torch_model.parameters():
if p.grad is not None:
p.grad /= dp_size
torch_optimizer.step()
torch_optimizer.zero_grad()
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
# use checkpoint to load sharded zero model
model_dir = "./test_mixtral"
if rank == world_size - 1:
os.makedirs(model_dir, exist_ok=True)
dist.barrier()
booster.save_model(parallel_model, model_dir, shard=True)
dist.barrier()
saved_model = MixtralModel.from_pretrained(model_dir).cuda().to(dtype)
check_model_equal(torch_model, saved_model, dtype=dtype)
dist.barrier()
if rank == world_size - 1:
shutil.rmtree(model_dir)
print(f"rank {dist.get_rank()} test passed")
@parameterize(
"config",
[
# DDP: ep == 1 since ep * moe_dp == dp == moe_dp; sp == 1 since sp * dp == moe_dp == dp
(0, 1, 4, 1, 1),
(0, 1, 1, 4, 1),
(0, 1, 2, 2, 1),
# zero 1
(1, 4, 1, 1, 1),
(1, 1, 4, 1, 1),
(1, 1, 1, 4, 1),
(1, 2, 1, 1, 2),
# zero 2
(2, 4, 1, 1, 1),
(2, 1, 4, 1, 1),
(2, 1, 1, 4, 1),
(2, 2, 1, 1, 2),
],
)
def run_mixtral_test(config: Tuple[int, ...]):
run_mixtral_commom(config)
@parameterize(
"config",
[
# DDP: ep == 1 since ep * moe_dp == dp == moe_dp; sp == 1 since sp * dp == moe_dp == dp
(0, 1, 2, 4, 1),
(0, 1, 4, 2, 1),
(0, 1, 1, 4, 1),
(0, 1, 4, 1, 1),
# zero 1:
(1, 2, 1, 1, 2),
(1, 2, 1, 4, 1),
(1, 1, 1, 2, 2),
(1, 2, 2, 2, 1),
# zero 2
(2, 2, 1, 1, 2),
(2, 2, 1, 4, 1),
(2, 1, 1, 2, 2),
(2, 2, 2, 2, 1),
],
)
def run_mixtral_3d_test(config: Tuple[int, ...]):
print(f"{config=}")
run_mixtral_commom(config)
def check_mixtral(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_mixtral_test()
def check_mixtral_3d(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_mixtral_3d_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_mixtral(world_size):
spawn(check_mixtral, world_size)
@pytest.mark.largedist
@pytest.mark.parametrize("world_size", [8])
@rerun_if_address_is_in_use()
def test_mixtral_3d(world_size):
spawn(check_mixtral_3d, world_size)
if __name__ == "__main__":
test_mixtral(world_size=8)
test_mixtral_3d(world_size=8)