mirror of https://github.com/hpcaitech/ColossalAI
57 lines
2.5 KiB
Python
57 lines
2.5 KiB
Python
import torch
|
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, \
|
|
gather_forward_split_backward, reduce_grad
|
|
from colossalai.nn.layer.utils import divide
|
|
from colossalai.core import global_context as gpc
|
|
from packaging import version
|
|
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
|
|
|
|
def colo_embedding_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, args, kwargs) -> ColoTensor:
|
|
# embedding_1Dcol split the weight(lookup table)
|
|
# Gather splitted lookup table
|
|
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol_Embedding)
|
|
if not input_tensor.is_gathered():
|
|
input_tensor.gather()
|
|
|
|
output_parallel = torch.nn.functional.embedding(input_tensor.torch_tensor(), weight.torch_tensor(),
|
|
*args, **kwargs)
|
|
output = ColoTensor.init_from_torch_tensor(output_parallel)
|
|
out_parallel_action_list = [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)]
|
|
output_spec = TensorSpec(out_parallel_action_list)
|
|
output.set_spec(output_spec, shard=False)
|
|
output.set_shard_pattern(ShardPattern.Col)
|
|
output.gather()
|
|
return output
|
|
|
|
@colo_op_impl(torch.nn.functional.embedding)
|
|
def colo_embedding(types, args, kwargs, pg):
|
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
|
|
This method looks up an embedding table.
|
|
"""
|
|
input_tensor = args[0]
|
|
weight = args[1]
|
|
args = args[2:]
|
|
|
|
if not isinstance(input_tensor, ColoTensor):
|
|
input_tensor = ColoTensor.init_from_torch_tensor(input_tensor)
|
|
|
|
if not isinstance(weight, ColoTensor):
|
|
weight = ColoTensor.init_from_torch_tensor(weight)
|
|
|
|
# Handle differen parallel actions.
|
|
if not weight.has_spec(): # No Model Parallel Applied
|
|
input_tensor = input_tensor.torch_tensor()
|
|
weight = weight.torch_tensor()
|
|
output = torch.nn.functional.embedding(input_tensor, weight, *args, **kwargs)
|
|
return ColoTensor.init_from_torch_tensor(output)
|
|
elif weight.shard_spec.num_action == 1: # Single Model Parallel Applied
|
|
compute_patterns = weight.shard_spec.compute_patterns
|
|
if ComputePattern.TP1DCol_Embedding in compute_patterns:
|
|
return colo_embedding_1Dcol(input_tensor, weight, args, kwargs)
|
|
else:
|
|
raise NotImplementedError
|
|
else:
|
|
raise NotImplementedError
|