ColossalAI/colossalai/tensor/_ops/embedding.py

57 lines
2.5 KiB
Python

import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.context import ParallelMode
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, \
gather_forward_split_backward, reduce_grad
from colossalai.nn.layer.utils import divide
from colossalai.core import global_context as gpc
from packaging import version
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
def colo_embedding_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, args, kwargs) -> ColoTensor:
# embedding_1Dcol split the weight(lookup table)
# Gather splitted lookup table
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol_Embedding)
if not input_tensor.is_gathered():
input_tensor.gather()
output_parallel = torch.nn.functional.embedding(input_tensor.torch_tensor(), weight.torch_tensor(),
*args, **kwargs)
output = ColoTensor.init_from_torch_tensor(output_parallel)
out_parallel_action_list = [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)]
output_spec = TensorSpec(out_parallel_action_list)
output.set_spec(output_spec, shard=False)
output.set_shard_pattern(ShardPattern.Col)
output.gather()
return output
@colo_op_impl(torch.nn.functional.embedding)
def colo_embedding(types, args, kwargs, pg):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
This method looks up an embedding table.
"""
input_tensor = args[0]
weight = args[1]
args = args[2:]
if not isinstance(input_tensor, ColoTensor):
input_tensor = ColoTensor.init_from_torch_tensor(input_tensor)
if not isinstance(weight, ColoTensor):
weight = ColoTensor.init_from_torch_tensor(weight)
# Handle differen parallel actions.
if not weight.has_spec(): # No Model Parallel Applied
input_tensor = input_tensor.torch_tensor()
weight = weight.torch_tensor()
output = torch.nn.functional.embedding(input_tensor, weight, *args, **kwargs)
return ColoTensor.init_from_torch_tensor(output)
elif weight.shard_spec.num_action == 1: # Single Model Parallel Applied
compute_patterns = weight.shard_spec.compute_patterns
if ComputePattern.TP1DCol_Embedding in compute_patterns:
return colo_embedding_1Dcol(input_tensor, weight, args, kwargs)
else:
raise NotImplementedError
else:
raise NotImplementedError