You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/lr_scheduler/delayed.py

150 lines
5.9 KiB

from torch.optim.lr_scheduler import _LRScheduler
class _enable_get_lr_call:
def __init__(self, o):
self.o = o
def __enter__(self):
self.o._get_lr_called_within_step = True
return self
def __exit__(self, type, value, traceback):
self.o._get_lr_called_within_step = False
class DelayerScheduler(_LRScheduler):
""" Starts with a flat lr schedule until it reaches N epochs the applies a scheduler
:param optimizer: Wrapped optimizer.
:type optimizer: torch.optim.Optimizer
:param delay_epochs: Number of epochs to keep the initial lr until starting aplying the scheduler
:type delay_epochs: int
:param after_scheduler: After target_epoch, use this scheduler(eg. ReduceLROnPlateau)
:type after_scheduler: torch.optim.lr_scheduler
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1):
if delay_epochs < 0:
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
self.delay_epochs = delay_epochs
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch >= self.delay_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
with _enable_get_lr_call(self.after_scheduler):
return self.after_scheduler.get_lr()
return self.base_lrs
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.delay_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super(DelayerScheduler, self).step(epoch)
class WarmupScheduler(_LRScheduler):
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
:param optimizer: Wrapped optimizer.
:type optimizer: torch.optim.Optimizer
:param warmup_epochs: Number of epochs to linearly warmup lr until starting aplying the scheduler
:type warmup_epochs: int
:param after_scheduler: After target_epoch, use this scheduler(eg. ReduceLROnPlateau)
:type after_scheduler: torch.optim.lr_scheduler
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
self.warmup_epochs = int(warmup_epochs)
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
return self.after_scheduler.get_lr()
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.warmup_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super().step(epoch)
class WarmupDelayerScheduler(_LRScheduler):
""" Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule until it reaches M epochs the applies a scheduler
:param optimizer: Wrapped optimizer.
:type optimizer: torch.optim.Optimizer
:param warmup_epochs: Number of epochs to linearly warmup lr until starting aplying the scheduler
:type warmup_epochs: int
:param delay_epochs: Number of epochs to keep the initial lr until starting aplying the scheduler
:type delay_epochs: int
:param after_scheduler: After target_epoch, use this scheduler(eg. ReduceLROnPlateau)
:type after_scheduler: torch.optim.lr_scheduler
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1):
if delay_epochs < 0:
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
if warmup_epochs < 0:
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
self.warmup_epochs = warmup_epochs
self.delay_epochs = delay_epochs
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
# reset lr to base_lr
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
group['lr'] = base_lr
self.finished = True
with _enable_get_lr_call(self.after_scheduler):
return self.after_scheduler.get_lr()
elif self.last_epoch >= self.warmup_epochs:
return self.base_lrs
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.warmup_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super().step(epoch)