mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
4.3 KiB
159 lines
4.3 KiB
model:
|
|
base_learning_rate: 5.0e-05
|
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
|
params:
|
|
linear_start: 0.00085
|
|
linear_end: 0.0120
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: "jpg"
|
|
cond_stage_key: "txt"
|
|
image_size: 64
|
|
channels: 4
|
|
cond_stage_trainable: false
|
|
conditioning_key: hybrid
|
|
scale_factor: 0.18215
|
|
monitor: val/loss_simple_ema
|
|
finetune_keys: null
|
|
use_ema: False
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
use_checkpoint: True
|
|
image_size: 32 # unused
|
|
in_channels: 9
|
|
out_channels: 4
|
|
model_channels: 320
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
num_res_blocks: 2
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
|
num_head_channels: 64 # need to fix for flash-attn
|
|
use_spatial_transformer: True
|
|
use_linear_in_transformer: True
|
|
transformer_depth: 1
|
|
context_dim: 1024
|
|
legacy: False
|
|
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
params:
|
|
embed_dim: 4
|
|
monitor: val/rec_loss
|
|
ddconfig:
|
|
#attn_type: "vanilla-xformers"
|
|
double_z: true
|
|
z_channels: 4
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: [ ]
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
|
|
cond_stage_config:
|
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
|
params:
|
|
freeze: True
|
|
layer: "penultimate"
|
|
|
|
|
|
data:
|
|
target: ldm.data.laion.WebDataModuleFromConfig
|
|
params:
|
|
tar_base: null # for concat as in LAION-A
|
|
p_unsafe_threshold: 0.1
|
|
filter_word_list: "data/filters.yaml"
|
|
max_pwatermark: 0.45
|
|
batch_size: 8
|
|
num_workers: 6
|
|
multinode: True
|
|
min_size: 512
|
|
train:
|
|
shards:
|
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
|
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
|
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
|
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
|
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
|
|
shuffle: 10000
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 512
|
|
interpolation: 3
|
|
- target: torchvision.transforms.RandomCrop
|
|
params:
|
|
size: 512
|
|
postprocess:
|
|
target: ldm.data.laion.AddMask
|
|
params:
|
|
mode: "512train-large"
|
|
p_drop: 0.25
|
|
# NOTE use enough shards to avoid empty validation loops in workers
|
|
validation:
|
|
shards:
|
|
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
|
|
shuffle: 0
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 512
|
|
interpolation: 3
|
|
- target: torchvision.transforms.CenterCrop
|
|
params:
|
|
size: 512
|
|
postprocess:
|
|
target: ldm.data.laion.AddMask
|
|
params:
|
|
mode: "512train-large"
|
|
p_drop: 0.25
|
|
|
|
lightning:
|
|
find_unused_parameters: True
|
|
modelcheckpoint:
|
|
params:
|
|
every_n_train_steps: 5000
|
|
|
|
callbacks:
|
|
metrics_over_trainsteps_checkpoint:
|
|
params:
|
|
every_n_train_steps: 10000
|
|
|
|
image_logger:
|
|
target: main.ImageLogger
|
|
params:
|
|
enable_autocast: False
|
|
disabled: False
|
|
batch_frequency: 1000
|
|
max_images: 4
|
|
increase_log_steps: False
|
|
log_first_step: False
|
|
log_images_kwargs:
|
|
use_ema_scope: False
|
|
inpaint: False
|
|
plot_progressive_rows: False
|
|
plot_diffusion_rows: False
|
|
N: 4
|
|
unconditional_guidance_scale: 5.0
|
|
unconditional_guidance_label: [""]
|
|
ddim_steps: 50 # todo check these out for depth2img,
|
|
ddim_eta: 0.0 # todo check these out for depth2img,
|
|
|
|
trainer:
|
|
benchmark: True
|
|
val_check_interval: 5000000
|
|
num_sanity_val_steps: 0
|
|
accumulate_grad_batches: 1
|