You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/model/colo_init_context.py

141 lines
5.4 KiB

from .utils import InsertPostInitMethodToModuleSubClasses
import torch
from colossalai.tensor import ColoTensor, ColoParameter, distspec
from colossalai.nn.parallel.layers import register_colo_module, \
ColoLinear, ColoEmbedding
from copy import copy
from torch import nn
from typing import Iterator, Tuple, Union
from functools import partialmethod
# find named_params includes replica
def _named_params_with_replica(
module: nn.Module,
prefix: str = '',
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
for mod_prefix, mod in modules:
for name, val in mod._parameters.items():
if val is None:
continue
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
def ColoModulize(module):
"""
Replacing the parameters() and named_parameters() with our customized ones
"""
module._colo_visited = True
def colo_state_dict(self, destination=None, prefix='', keep_vars=False, state_dict_func=None):
# build param to spec mapping
mapping1 = dict()
mapping2 = dict()
mapping3 = dict()
# gather all params
has_dist_parameter = False
with torch.no_grad():
for param in self.parameters():
if isinstance(param, ColoParameter):
has_dist_parameter = True
mapping1[id(param)] = copy(param.dist_spec)
mapping2[id(param)] = copy(param.compute_spec)
mapping3[id(param)] = param.get_process_group()
param.set_dist_spec(distspec.replicate())
param.process_group = None
# TODO: fix when keep_vars = True
# when keep_vars = False, the state_dict_func will call detach to create
# new tensors, but when keep_vars = True, the recovery of spec will be reflected
# in the `ret`, such that the final state dict will still contain process group,
# raising exception as it is not serializable
assert not (keep_vars and has_dist_parameter), 'keep_vars cannot be True when there are distributed ColoParameters.'
ret = state_dict_func(self, destination, prefix, keep_vars)
# recover
with torch.no_grad():
for param in self.parameters():
param_id = id(param)
if param_id in mapping1:
dist_spec = mapping1[id(param)]
compute_spec = mapping2[id(param)]
param.process_group = mapping3[id(param)]
param.set_tensor_spec(dist_spec, compute_spec)
return ret
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
def __init__(self, lazy_memory_allocate: bool = False, device: torch.device = torch.device('cpu')):
"""
Args:
lazy_memory_allocate (bool, optional): whether to allocate memory for the parameter tensors. Defaults to False.
device (torch.device, optional): the device parameters initialized are resident on. Defaults to torch.device('cpu').
"""
super().__init__()
self._lazy_memory_allocate = lazy_memory_allocate
self._device = device
self._register_colo_modules()
def _register_colo_modules(self):
register_colo_module(torch.nn.Linear, ColoLinear())
register_colo_module(torch.nn.Embedding, ColoEmbedding())
def _pre_context_exec(self):
self.state_dict_func = nn.Module.state_dict
nn.Module.state_dict = partialmethod(colo_state_dict, state_dict_func=self.state_dict_func)
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""
The function to call at the end of the constructor of each module.
FIXME(fjr) The module may be passed to this function multiple times?
"""
if hasattr(module, '_colo_visited'):
return
name_list = []
for name, param in _named_params_with_replica(module):
if isinstance(param, ColoTensor):
continue
split = name.rfind('.')
if split >= 0: # param in submodule
module_name = name[:split]
param_name = name[split + 1:]
else:
module_name = '' # param in current module
param_name = name
name_list.append((module_name, param_name))
replaced_tensors = dict(
) # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference
for module_name, param_name in name_list:
submodule = module.get_submodule(module_name)
param = submodule.get_parameter(param_name)
if param in replaced_tensors:
colo_param = replaced_tensors[param]
else:
save_torch_payload = True if not self._lazy_memory_allocate else False
# detaching tensor is necessary for optimizers.
requires_grad = param.requires_grad
# TODO(jiaruifang) we initialize a Default PG memory
colo_param = ColoParameter(param.to(self._device), requires_grad=requires_grad)
# add mapping record
replaced_tensors[param] = colo_param
delattr(submodule, param_name)
setattr(submodule, param_name, colo_param)
colo_param.shared_param_modules.append(submodule)
module.to(self._device)
ColoModulize(module)