ColossalAI/examples
Xu Kai 611a5a80ca
[inference] Add smmoothquant for llama (#4904)
* [inference] add int8 rotary embedding kernel for smoothquant (#4843)

* [inference] add smoothquant llama attention (#4850)

* add smoothquant llama attention

* remove uselss code

* remove useless code

* fix import error

* rename file name

* [inference] add silu linear fusion for smoothquant llama mlp  (#4853)

* add silu linear

* update skip condition

* catch smoothquant cuda lib exception

* prcocess exception for tests

* [inference] add llama mlp for smoothquant (#4854)

* add llama mlp for smoothquant

* fix down out scale

* remove duplicate lines

* add llama mlp check

* delete useless code

* [inference] add smoothquant llama (#4861)

* add smoothquant llama

* fix attention accuracy

* fix accuracy

* add kv cache and save pretrained

* refactor example

* delete smooth

* refactor code

* [inference] add smooth function and delete useless code for smoothquant (#4895)

* add smooth function and delete useless code

* update datasets

* remove duplicate import

* delete useless file

* refactor codes (#4902)

* rafactor code

* add license

* add torch-int and smoothquant license
2023-10-16 11:28:44 +08:00
..
community [bug] fix get_default_parser in examples (#4764) 2023-09-21 10:42:25 +08:00
images [doc] update slack link (#4823) 2023-09-27 17:37:39 +08:00
inference [inference] Add smmoothquant for llama (#4904) 2023-10-16 11:28:44 +08:00
language [nfc] fix minor typo in README (#4846) 2023-10-07 17:51:11 +08:00
tutorial [fix] fix weekly runing example (#4787) 2023-09-25 16:19:33 +08:00
README.md [doc] update slack link (#4823) 2023-09-27 17:37:39 +08:00

README.md

Colossal-AI Examples

Table of Contents

Overview

This folder provides several examples accelerated by Colossal-AI. Folders such as images and language include a wide range of deep learning tasks and applications. The community folder aim to create a collaborative platform for developers to contribute exotic features built on top of Colossal-AI. The tutorial folder is for everyone to quickly try out the different features in Colossal-AI.

You can find applications such as Chatbot, AIGC and Biomedicine in the Applications directory.

Folder Structure

└─ examples
  └─ images
      └─ vit
        └─ test_ci.sh
        └─ train.py
        └─ README.md
      └─ ...
  └─ ...

Invitation to open-source contribution

Referring to the successful attempts of BLOOM and Stable Diffusion, any and all developers and partners with computing powers, datasets, models are welcome to join and build the Colossal-AI community, making efforts towards the era of big AI models!

You may contact us or participate in the following ways:

  1. Leaving a Star to show your like and support. Thanks!
  2. Posting an issue, or submitting a PR on GitHub follow the guideline in Contributing.
  3. Join the Colossal-AI community on Slack, and WeChat(微信) to share your ideas.
  4. Send your official proposal to email contact@hpcaitech.com

Thanks so much to all of our amazing contributors!

Integrate Your Example With Testing

Regular checks are important to ensure that all examples run without apparent bugs and stay compatible with the latest API. Colossal-AI runs workflows to check for examples on a on-pull-request and weekly basis. When a new example is added or changed, the workflow will run the example to test whether it can run. Moreover, Colossal-AI will run testing for examples every week.

Therefore, it is essential for the example contributors to know how to integrate your example with the testing workflow. Simply, you can follow the steps below.

  1. Create a script called test_ci.sh in your example folder
  2. Configure your testing parameters such as number steps, batch size in test_ci.sh, e.t.c. Keep these parameters small such that each example only takes several minutes.
  3. Export your dataset path with the prefix /data and make sure you have a copy of the dataset in the /data/scratch/examples-data directory on the CI machine. Community contributors can contact us via slack to request for downloading the dataset on the CI machine.
  4. Implement the logic such as dependency setup and example execution

Community Dependency

We are happy to introduce the following nice community dependency repos that are powered by Colossal-AI: