You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_booster/test_plugin/test_3d_plugin.py

280 lines
8.9 KiB

import copy
from contextlib import nullcontext
from typing import Optional
import torch
import torch.distributed as dist
from torch.testing import assert_close
from torch.utils.data import Dataset
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.fx import is_compatible_with_meta
from colossalai.lazy.lazy_init import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from tests.kit.model_zoo import model_zoo
class RandomDataset(Dataset):
def __init__(self, num_samples: int = 100, max_length: int = 512, vocab_size: int = 32000):
self.num_samples = num_samples
self.max_length = max_length
set_seed(42)
self.input_ids = torch.randint(
0, vocab_size, (num_samples, max_length), device=get_accelerator().get_current_device()
)
self.attention_mask = torch.ones_like(self.input_ids)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}
def move_to_cuda(batch):
return {k: v.cuda() for k, v in batch.items()}
@clear_cache_before_run()
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
try:
if init_method == "lazy":
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision="bf16")
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to("cuda").repeat(4, 1) if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v
for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data_iter = iter([data])
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
output_key = list(outputs.keys())[0]
loss = criterion(outputs[output_key])
return loss
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True)
optimizer.step()
except Exception as e:
return repr(e)
@parameterize("init_method", ["none", "lazy"])
def check_3d_plugin(init_method: str = "none", early_stop: bool = True):
"""check hybrid plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
is_support_meta = is_compatible_with_meta()
if not is_support_meta and init_method == "lazy":
return
passed_models = []
failed_info = {} # (model_name, error) pair
# TODO(ver217): add more models
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(
"transformers_llama_for_casual_lm"
).items():
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f"Init method: {init_method}")
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
@parameterize(
"test_args",
[
{
"batch_size": 8,
"num_steps": 4,
"tp": 2,
"pp": 2,
"pp_style": "1f1b",
"num_model_chunks": 1,
"num_microbatches": 4,
"zero": 1,
"precision": "fp16",
"initial_scale": 1,
"max_length": 512,
"gradient_accumulation_step": 2,
},
{
"batch_size": 8,
"num_steps": 4,
"tp": 2,
"pp": 2,
"pp_style": "1f1b",
"num_model_chunks": 1,
"num_microbatches": 4,
"zero": 0,
"precision": "fp16",
"initial_scale": 1,
"max_length": 512,
"gradient_accumulation_step": 2,
},
{
"batch_size": 8,
"num_steps": 4,
"tp": 1,
"pp": 2,
"pp_style": "1f1b",
"num_model_chunks": 1,
"num_microbatches": 4,
"zero": 1,
"precision": "fp16",
"initial_scale": 1,
"max_length": 512,
"gradient_accumulation_step": 2,
},
{
"batch_size": 1,
"num_steps": 4,
"tp": 2,
"pp": 1,
"pp_style": "1f1b",
"num_model_chunks": 1,
"num_microbatches": 1,
"zero": 2,
"precision": "fp16",
"initial_scale": 1,
"max_length": 512,
"gradient_accumulation_step": 2,
},
{
"batch_size": 1,
"num_steps": 4,
"tp": 2,
"pp": 1,
"pp_style": "1f1b",
"num_model_chunks": 1,
"num_microbatches": 1,
"zero": 0,
"precision": "fp16",
"initial_scale": 1,
"max_length": 512,
"gradient_accumulation_step": 2,
},
],
)
def run_grad_acc_test(test_args):
model_fn, *_ = next(iter(model_zoo.get_sub_registry("transformers_gpt_lm").values()))
model = model_fn()
optimizer = HybridAdam(model.parameters())
origin_model = copy.deepcopy(model).cuda()
origin_optimizer = HybridAdam(origin_model.parameters())
plugin = HybridParallelPlugin(
tp_size=test_args["tp"],
pp_size=test_args["pp"],
pp_style=test_args["pp_style"],
zero_stage=test_args["zero"],
num_model_chunks=test_args["num_model_chunks"],
enable_fused_normalization=True,
num_microbatches=test_args["num_microbatches"],
precision=test_args["precision"],
)
booster = Booster(plugin=plugin)
dataset = RandomDataset(
num_samples=test_args["batch_size"] * test_args["num_steps"] * plugin.dp_size,
max_length=test_args["max_length"],
vocab_size=model.config.vocab_size,
)
dataloader = plugin.prepare_dataloader(dataset, batch_size=test_args["batch_size"], shuffle=True, drop_last=True)
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
grad_accu_step = test_args["gradient_accumulation_step"]
for step, batch in enumerate(dataloader):
batch = move_to_cuda(batch)
# train origin model
origin_output = origin_model(**batch)
origin_loss = origin_output[0] / grad_accu_step
origin_loss.backward()
if (step + 1) % grad_accu_step != 0 and test_args["zero"] != 2:
ctx = booster.no_sync(model, optimizer)
else:
ctx = nullcontext()
with ctx:
if plugin.stage_manager is not None:
batch = iter([batch])
booster.execute_pipeline(
batch,
model,
criterion=lambda outputs, inputs: outputs[0] / grad_accu_step,
optimizer=optimizer,
return_loss=False,
)
else:
outputs = model(**batch)
loss = outputs[0] / grad_accu_step
booster.backward(loss, optimizer)
if (step + 1) % grad_accu_step == 0:
# update origin model weight
origin_optimizer.step()
origin_optimizer.zero_grad()
# update sharded model
optimizer.step()
optimizer.zero_grad()
# tricky code here, shard the origin model inorder to check the parameters in the same stage.
origin_model, origin_optimizer, _, dataloader, _ = booster.boost(
origin_model, origin_optimizer, dataloader=dataloader
)
for p1, p2 in zip(model.unwrap().parameters(), origin_model.unwrap().parameters()):
assert_close(p1.to(p2.dtype), p2, atol=1e-2, rtol=1e-2)
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_3d_plugin(early_stop=early_stop)
run_grad_acc_test()
@rerun_if_address_is_in_use()
def test_3d_plugin(early_stop: bool = True):
spawn(run_dist, 4, early_stop=early_stop)
if __name__ == "__main__":
test_3d_plugin(early_stop=False)