mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
446 lines
17 KiB
446 lines
17 KiB
import warnings
|
|
from functools import partial
|
|
from typing import Callable, Dict, List
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from ..modeling.bloom import (
|
|
BloomPipelineForwards,
|
|
build_bloom_alibi_tensor_fn,
|
|
get_bloom_flash_attention_forward,
|
|
get_bloom_sequence_parallel_forward_fn,
|
|
get_jit_fused_bloom_attention_forward,
|
|
get_jit_fused_bloom_gelu_forward,
|
|
get_jit_fused_bloom_mlp_forward,
|
|
get_lm_forward_with_dist_cross_entropy,
|
|
)
|
|
from ..modeling.jit import get_dropout_add_func, get_jit_fused_dropout_add_func, get_jit_fused_gelu_forward_func
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
|
|
class BloomPolicy(Policy):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
self.tie_weight = self.tie_weight_check()
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomGelu, BloomMLP, BloomModel
|
|
|
|
policy = {}
|
|
|
|
embedding_cls = None
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
embedding_cls = col_nn.VocabParallelEmbedding1D
|
|
else:
|
|
if self.tie_weight:
|
|
embedding_cls = col_nn.PaddingEmbedding
|
|
|
|
if self.shard_config.enable_fused_normalization:
|
|
norm_cls = col_nn.FusedLayerNorm
|
|
else:
|
|
norm_cls = col_nn.LayerNorm
|
|
|
|
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
|
|
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for BLOOM"
|
|
if sp_mode == "ring":
|
|
warnings.warn(
|
|
f"For BLOOM, sequence parallelism is currently not support mode {sp_mode}, will set to be split_gather"
|
|
)
|
|
sp_mode = "split_gather"
|
|
|
|
overlap = self.shard_config.enable_sequence_overlap
|
|
sp_partial_derived = sp_mode == "split_gather"
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
assert (
|
|
self.model.config.n_head % self.shard_config.tensor_parallel_size == 0
|
|
), f"The number of attention heads must be divisible by tensor parallel size."
|
|
policy[BloomBlock] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"self_attention.hidden_size": self.model.config.hidden_size
|
|
// self.shard_config.tensor_parallel_size,
|
|
"self_attention.split_size": self.model.config.hidden_size
|
|
// self.shard_config.tensor_parallel_size,
|
|
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.query_key_value",
|
|
target_module=col_nn.Linear1D_Col,
|
|
kwargs={"seq_parallel_mode": sp_mode, "overlap": overlap},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
kwargs={"seq_parallel_mode": sp_mode},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.attention_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dense_h_to_4h",
|
|
target_module=col_nn.Linear1D_Col,
|
|
kwargs={"seq_parallel_mode": sp_mode, "overlap": overlap},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dense_4h_to_h",
|
|
target_module=col_nn.Linear1D_Row,
|
|
kwargs={"seq_parallel_mode": sp_mode},
|
|
),
|
|
],
|
|
)
|
|
|
|
policy[BloomModel] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
|
|
},
|
|
method_replacement={
|
|
"build_alibi_tensor": build_bloom_alibi_tensor_fn(self.shard_config.tensor_parallel_process_group)
|
|
},
|
|
)
|
|
|
|
if embedding_cls is not None:
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="word_embeddings",
|
|
target_module=embedding_cls,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=BloomModel,
|
|
)
|
|
|
|
# optimization configuration
|
|
# handle bloom model
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_f",
|
|
target_module=norm_cls,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="word_embeddings_layernorm",
|
|
target_module=norm_cls,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=BloomModel,
|
|
)
|
|
|
|
# handle bloom block
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=norm_cls,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=BloomBlock,
|
|
)
|
|
|
|
if sp_mode == "split_gather":
|
|
self.append_or_create_method_replacement(
|
|
description={"forward": get_bloom_sequence_parallel_forward_fn(self.shard_config)},
|
|
policy=policy,
|
|
target_key=BloomModel,
|
|
)
|
|
|
|
if self.shard_config.enable_flash_attention:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_bloom_flash_attention_forward(),
|
|
"dropout_add": get_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=BloomAttention,
|
|
)
|
|
|
|
# enable jit fused operator
|
|
if self.shard_config.enable_jit_fused:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_bloom_attention_forward(),
|
|
"dropout_add": get_jit_fused_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=BloomAttention,
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_bloom_mlp_forward(),
|
|
"dropout_add": get_jit_fused_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=BloomMLP,
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_bloom_gelu_forward(),
|
|
"bloom_gelu_forward": get_jit_fused_gelu_forward_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=BloomGelu,
|
|
)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager:
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "BloomModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
stage_index = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {
|
|
"forward": partial(
|
|
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
|
)
|
|
}
|
|
self.append_or_create_method_replacement(
|
|
description=method_replacement, policy=policy, target_key=model_cls
|
|
)
|
|
return
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == "BloomModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.h))
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.word_embeddings)
|
|
held_layers.append(module.word_embeddings_layernorm)
|
|
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
|
|
held_layers.extend(module.h[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.ln_f)
|
|
|
|
return held_layers
|
|
|
|
|
|
class BloomModelPolicy(BloomPolicy):
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
from transformers.models.bloom.modeling_bloom import BloomModel
|
|
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(
|
|
model_cls=BloomModel, new_forward=BloomPipelineForwards.bloom_model_forward, policy=policy
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""
|
|
get pipeline layers for current stage
|
|
"""
|
|
held_layers = super().get_held_layers()
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""no shared params in bloom model"""
|
|
return []
|
|
|
|
|
|
class BloomForCausalLMPolicy(BloomPolicy):
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
|
|
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.VocabParallelLMHead1D,
|
|
kwargs=dict(
|
|
gather_output=not self.shard_config.parallel_output,
|
|
make_vocab_size_divisible_by=self.shard_config.make_vocab_size_divisible_by,
|
|
),
|
|
),
|
|
policy=policy,
|
|
target_key=BloomForCausalLM,
|
|
)
|
|
if self.shard_config.parallel_output:
|
|
method_replacement = {"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)}
|
|
self.append_or_create_method_replacement(
|
|
description=method_replacement, policy=policy, target_key=BloomForCausalLM
|
|
)
|
|
else:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.PaddingLMHead,
|
|
kwargs=dict(make_vocab_size_divisible_by=self.shard_config.make_vocab_size_divisible_by),
|
|
),
|
|
policy=policy,
|
|
target_key=BloomForCausalLM,
|
|
)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(
|
|
model_cls=BloomForCausalLM, new_forward=BloomPipelineForwards.bloom_for_causal_lm_forward, policy=policy
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
bloom_model = self.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
if id(bloom_model.transformer.word_embeddings.weight) == id(bloom_model.lm_head.weight):
|
|
# tie weights
|
|
return [
|
|
{
|
|
0: bloom_model.transformer.word_embeddings.weight,
|
|
self.pipeline_stage_manager.num_stages - 1: bloom_model.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
class BloomForSequenceClassificationPolicy(BloomPolicy):
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForSequenceClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="score", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)
|
|
),
|
|
policy=policy,
|
|
target_key=BloomForSequenceClassification,
|
|
)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(
|
|
model_cls=BloomForSequenceClassification,
|
|
new_forward=BloomPipelineForwards.bloom_for_sequence_classification_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for sequence classification model"""
|
|
return []
|
|
|
|
|
|
class BloomForTokenClassificationPolicy(BloomPolicy):
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForTokenClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="classifier", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=col_nn.DropoutForReplicatedInput,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=BloomForTokenClassification,
|
|
)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(
|
|
model_cls=BloomForTokenClassification,
|
|
new_forward=BloomPipelineForwards.bloom_for_token_classification_forward,
|
|
policy=policy,
|
|
)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.dropout)
|
|
held_layers.append(self.model.classifier)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for token classification model"""
|
|
return []
|
|
|
|
|
|
class BloomForQuestionAnsweringPolicy(BloomPolicy):
|
|
# No head sharding as the output features is only 2
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForQuestionAnswering
|
|
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(
|
|
model_cls=BloomForQuestionAnswering,
|
|
new_forward=BloomPipelineForwards.bloom_for_question_answering_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
held_layers = super().get_held_layers()
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.qa_outputs)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for question answering model"""
|
|
return []
|