You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/layer/loss.py

135 lines
5.1 KiB

import torch
import torch.distributed as dist
from torch.autograd import Function
from torch.distributed import ProcessGroup
__all__ = ["DistCrossEntropy", "cross_entropy_1d"]
class DistCrossEntropy(Function):
r"""
Overwrite the forward and backward function to calculate the cross entropy loss before gather
Args:
Function (:class:`torch.autograd.Function`): default
"""
@staticmethod
def forward(
ctx,
vocab_logits: torch.Tensor,
target: torch.Tensor,
ignore_index: int,
process_group: ProcessGroup,
vocab_size: int,
dtype=torch.float32,
):
r"""
Calculate the cross entropy loss before gather, the origin loss function is as follows:
loss = -log(exp(x[class])/sum(exp(x[i]))
and can be rewrite as:
loss = log(sum(exp(x[i])) - x[class]
To avoid the `nan` of log(sum(exp(x[i]))), we minus the max of x[i]
Args:
vocab_logits (:class:`torch.Tensor`): The logits of the vocabulary, shape is
[batch_size, seq_len, vocab_size]
target (:class:`torch.Tensor`): The labels of the vocabulary, shape is
[batch_size, seq_len]
Returns:
:class:`torch.Tensor`: The cross entropy loss
"""
# get the max
logits_max = torch.max(vocab_logits, dim=-1)[0]
dist.all_reduce(logits_max, op=dist.ReduceOp.MAX, group=process_group)
# minus the max to avoid the result of sum of exp is too large and the log is nan
vocab_logits = vocab_logits - logits_max.unsqueeze(dim=-1)
# mask the target in the local device
rank = dist.get_rank(group=process_group)
world_size = dist.get_world_size(group=process_group)
if vocab_size == None:
partition_vocab_size = vocab_logits.size()[-1]
global_vocab_size = partition_vocab_size * world_size
else:
global_vocab_size = vocab_size
partition_vocab_size = global_vocab_size // world_size
# [down, up) => false, other device and -100 => true
delta = (global_vocab_size + world_size - 1) // world_size
down_threshold = rank * delta
up_threshold = down_threshold + delta
if up_threshold > global_vocab_size:
up_threshold = global_vocab_size
mask = (target < down_threshold) | (target >= up_threshold)
masked_target = target.clone() - down_threshold
masked_target[mask] = 0
# reshape the logits and target
# reshape the vocab_logits to [bath_size * seq_len, vocab_size]
# reshape the labels to [bath_size * seq_len]
self_vocab_size = vocab_logits.size()[-1]
logits_2d = vocab_logits.view(-1, self_vocab_size)
masked_target_1d = masked_target.view(-1)
# extract the x[class] and set the x[other device] to zero
pred_logits_1d = logits_2d[
torch.arange(start=0, end=logits_2d.shape[0], device=logits_2d.device), masked_target_1d
]
pred_logits_1d = pred_logits_1d.clone().contiguous()
pred_logits = pred_logits_1d.view_as(target)
pred_logits[mask] = 0.0
# allreduce the get all x(i,y)
dist.all_reduce(pred_logits, op=dist.ReduceOp.SUM, group=process_group)
exp_logits = vocab_logits
torch.exp(vocab_logits, out=exp_logits)
sum_exp_logits = torch.sum(exp_logits, dim=-1, dtype=torch.float32)
dist.all_reduce(sum_exp_logits, op=dist.ReduceOp.SUM, group=process_group)
# calculate the loss
# loss = log(sum(exp(x[i]))) - x[class]
loss = torch.where(target == ignore_index, 0.0, torch.log(sum_exp_logits) - pred_logits)
num_non_zero = torch.sum(loss != 0.0)
ctx.inv_num_non_zero = 1.0 / num_non_zero
loss = torch.sum(loss).div_(num_non_zero)
# calculate the softmax
exp_logits = exp_logits.div(sum_exp_logits.unsqueeze(dim=-1)).to(dtype)
exp_logits[target == ignore_index] = 0.0
ctx.save_for_backward(exp_logits, mask, masked_target_1d)
ctx.dtype = dtype
return loss
@staticmethod
def backward(ctx, grad_output):
# retrieve the saved tensors
grad_output = grad_output * ctx.inv_num_non_zero
exp_logits, mask, masked_target_1d = ctx.saved_tensors
# use exp logits as the input grad
grad_logits = exp_logits
partion_vocab_size = grad_logits.shape[-1]
grad_logits_2d = grad_logits.view(-1, partion_vocab_size)
update = 1.0 - mask.view(-1).float().to(ctx.dtype)
grad_logits_2d[torch.arange(0, grad_logits_2d.shape[0]), masked_target_1d] -= update
grad_logits.mul_(grad_output.unsqueeze(dim=-1))
return grad_logits, None, None, None, None, None
def cross_entropy_1d(
vocab_logits: torch.Tensor,
labels: torch.Tensor,
ignore_index: int = -100,
process_group: ProcessGroup = None,
vocab_size: int = None,
dtype: torch.dtype = None,
) -> torch.Tensor:
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group, vocab_size, dtype)