mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.7 KiB
143 lines
5.7 KiB
import asyncio
|
|
import codecs
|
|
import logging
|
|
|
|
from fastapi import Request
|
|
|
|
from colossalai.inference.core.async_engine import AsyncInferenceEngine
|
|
|
|
from .utils import ChatCompletionResponseStreamChoice, ChatMessage, DeltaMessage, id_generator
|
|
|
|
logger = logging.getLogger("colossalai-inference")
|
|
|
|
|
|
class ChatServing:
|
|
def __init__(
|
|
self, engine: AsyncInferenceEngine, served_model: str, tokenizer, response_role: str, chat_template=None
|
|
):
|
|
self.engine = engine
|
|
self.served_model = served_model
|
|
self.tokenizer = tokenizer
|
|
self.response_role = response_role
|
|
self._load_chat_template(chat_template)
|
|
try:
|
|
asyncio.get_running_loop()
|
|
except RuntimeError:
|
|
pass
|
|
|
|
async def create_chat(self, request: Request, generation_config):
|
|
request_dict = await request.json()
|
|
messages = request_dict["messages"]
|
|
stream = request_dict.pop("stream", "false").lower()
|
|
add_generation_prompt = request_dict.pop("add_generation_prompt", False)
|
|
request_id = id_generator()
|
|
try:
|
|
prompt = self.tokenizer.apply_chat_template(
|
|
conversation=messages,
|
|
tokenize=False,
|
|
add_generation_prompt=add_generation_prompt,
|
|
)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error in applying chat template from request: {str(e)}")
|
|
|
|
# it is not a intuitive way
|
|
self.engine.engine.generation_config = generation_config
|
|
result_generator = self.engine.generate(request_id, prompt=prompt)
|
|
|
|
if stream == "true":
|
|
return self.chat_completion_stream_generator(request, request_dict, result_generator, request_id)
|
|
else:
|
|
return await self.chat_completion_full_generator(request, request_dict, result_generator, request_id)
|
|
|
|
async def chat_completion_stream_generator(self, request, request_dict, result_generator, request_id: int):
|
|
# Send first response for each request.n (index) with the role
|
|
role = self.get_chat_request_role(request, request_dict)
|
|
n = request_dict.get("n", 1)
|
|
echo = request_dict.get("echo", "false").lower()
|
|
for i in range(n):
|
|
choice_data = ChatCompletionResponseStreamChoice(index=i, message=DeltaMessage(role=role))
|
|
data = choice_data.model_dump_json(exclude_unset=True)
|
|
yield f"data: {data}\n\n"
|
|
|
|
# Send response to echo the input portion of the last message
|
|
if echo == "true":
|
|
last_msg_content = ""
|
|
if (
|
|
request_dict["messages"]
|
|
and isinstance(request_dict["messages"], list)
|
|
and request_dict["messages"][-1].get("content")
|
|
and request_dict["messages"][-1].get("role") == role
|
|
):
|
|
last_msg_content = request_dict["messages"][-1]["content"]
|
|
if last_msg_content:
|
|
for i in range(n):
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
index=i, message=DeltaMessage(content=last_msg_content)
|
|
)
|
|
data = choice_data.model_dump_json(exclude_unset=True)
|
|
yield f"data: {data}\n\n"
|
|
|
|
result = await result_generator
|
|
choice_data = DeltaMessage(content=result.output)
|
|
data = choice_data.model_dump_json(exclude_unset=True, exclude_none=True)
|
|
yield f"data: {data}\n\n"
|
|
|
|
# Send the final done message after all response.n are finished
|
|
yield "data: [DONE]\n\n"
|
|
|
|
async def chat_completion_full_generator(
|
|
self,
|
|
request: Request,
|
|
request_dict: dict,
|
|
result_generator,
|
|
request_id,
|
|
):
|
|
if await request.is_disconnected():
|
|
# Abort the request if the client disconnects.
|
|
await self.engine.abort(request_id)
|
|
return {"error_msg": "Client disconnected"}
|
|
|
|
result = await result_generator
|
|
assert result is not None
|
|
role = self.get_chat_request_role(request, request_dict)
|
|
choice_data = ChatMessage(role=role, content=result.output)
|
|
echo = request_dict.get("echo", "false").lower()
|
|
|
|
if echo == "true":
|
|
last_msg_content = ""
|
|
if (
|
|
request.messages
|
|
and isinstance(request.messages, list)
|
|
and request.messages[-1].get("content")
|
|
and request.messages[-1].get("role") == role
|
|
):
|
|
last_msg_content = request.messages[-1]["content"]
|
|
|
|
full_message = last_msg_content + choice_data.content
|
|
choice_data.content = full_message
|
|
|
|
return choice_data
|
|
|
|
def get_chat_request_role(self, request: Request, request_dict: dict) -> str:
|
|
add_generation_prompt = request_dict.get("add_generation_prompt", False)
|
|
if add_generation_prompt:
|
|
return self.response_role
|
|
else:
|
|
return request_dict["messages"][-1]["role"]
|
|
|
|
def _load_chat_template(self, chat_template):
|
|
if chat_template is not None:
|
|
try:
|
|
with open(chat_template, "r") as f:
|
|
self.tokenizer.chat_template = f.read()
|
|
except OSError:
|
|
# If opening a file fails, set chat template to be args to
|
|
# ensure we decode so our escape are interpreted correctly
|
|
self.tokenizer.chat_template = codecs.decode(chat_template, "unicode_escape")
|
|
|
|
logger.info(f"Using supplied chat template:\n{self.tokenizer.chat_template}")
|
|
elif self.tokenizer.chat_template is not None:
|
|
logger.info(f"Using default chat template:\n{self.tokenizer.chat_template}")
|
|
else:
|
|
logger.warning("No chat template provided. Chat API will not work.")
|