You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/coati/ray/lora_constructor.py

124 lines
4.1 KiB

from collections import OrderedDict
from dataclasses import dataclass
from typing import Any, Dict
import torch.nn as nn
from coati.models.lora import LoraLinear
@dataclass
class LoRAConfig:
r: int = 0
lora_alpha: int = 1
lora_dropout: float = 0
fan_in_fan_out: bool = False
class LoRAConstructor:
"""
Tools for reconstructing a model from a remote LoRA model.
(Transferring only LoRA data costs much less!)
Usage:
Step 1 (Sender):
filter_state_dict_lora()
Step 2 (Sender, Optional):
extract_lora_config()
Step 3 (Sender):
send state_dict_lora and lora_config_dict
Step 4 (Receiver):
reconstruct_increase()
Step 5 (Receiver):
load_state_dict_increase()
"""
def __init__(self):
self.lora_config_dict = None
def register_lora_config(self, lora_config_dict: Dict[str, Any]):
self.lora_config_dict = lora_config_dict
def reconstruct_increase(self, state_dict_lora: Dict[str, Any], lora_config_dict: Dict[str, Any]):
"""
xxx.lora_A, xxx.lora_B -->> xxx.weight
Warning: the xxx.weight here is the increment actually.
"""
if lora_config_dict is not None:
self.register_lora_config(lora_config_dict)
state_dict_increase = OrderedDict()
config_iter = iter(self.lora_config_dict.items())
lora_A, lora_B, layer_prefix = None, None, None
for k, v in state_dict_lora.items():
if k.rpartition(".")[-1] == "lora_A":
lora_A = v
layer_prefix = k.rpartition(".")[0]
elif k.rpartition(".")[-1] == "lora_B":
assert layer_prefix == k.rpartition(".")[0], "unmatched (lora_A, lora_B) pair"
layer_prefix_2, config = next(config_iter)
assert layer_prefix_2 == layer_prefix, "unmatched (state_dict, config_dict) pair"
lora_B = v
weight_data_increase = self._compute(lora_A, lora_B, config)
state_dict_increase[layer_prefix + ".weight"] = weight_data_increase
lora_A, lora_B, layer_prefix = None, None, None
else:
raise ValueError("unexpected key")
return state_dict_increase
def _compute(self, lora_A, lora_B, config=LoRAConfig()):
def T(w):
return w.T if config.fan_in_fan_out else w
if config.r > 0:
scaling = config.lora_alpha / config.r
weight_data_increase = T(lora_B @ lora_A) * scaling
return weight_data_increase
return 0
def load_state_dict_increase(self, model: nn.Module, state_dict_increase: Dict[str, Any]):
"""
The final reconstruction step
"""
# naive approach
model.load_state_dict({k: v + model.state_dict()[k] for k, v in state_dict_increase.items()}, strict=False)
@staticmethod
def filter_state_dict_lora(state_dict: Dict[str, Any], keep_non_lora=False):
"""
if keep_non_lora, also return non_lora state_dict
"""
state_dict_lora = OrderedDict()
state_dict_non_lora = OrderedDict()
for k, v in state_dict.items():
if "lora_A" in k or "lora_B" in k:
state_dict_lora[k] = v
elif keep_non_lora:
state_dict_non_lora[k] = v
if keep_non_lora:
return state_dict_lora, state_dict_non_lora
else:
return state_dict_lora, None
@staticmethod
def extract_lora_config(model: nn.Module) -> Dict[str, LoRAConfig]:
"""
extract LoraLinear model.
return OrderedDict(): name -> LoRAConfig
"""
lora_config_dict = OrderedDict()
for name, child in model.named_modules():
if isinstance(child, LoraLinear):
lora_config_dict[name] = LoRAConfig(
r=child.r,
lora_alpha=child.lora_alpha,
lora_dropout=child.lora_dropout,
fan_in_fan_out=child.fan_in_fan_out,
)
return lora_config_dict