mirror of https://github.com/hpcaitech/ColossalAI
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
import pytest
|
|
import torch
|
|
|
|
from colossalai.communication.p2p import (
|
|
recv_backward,
|
|
recv_forward,
|
|
send_backward,
|
|
send_backward_recv_forward,
|
|
send_forward,
|
|
send_forward_recv_backward,
|
|
)
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.initialize import launch
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
|
|
CONFIG = dict(parallel=dict(pipeline=2))
|
|
torch.manual_seed(123)
|
|
LIST_LENGTH = 3
|
|
TENSOR_SIZE = torch.Size((3, 3))
|
|
TENSOR_SIZE_LIST = [TENSOR_SIZE for i in range(LIST_LENGTH)]
|
|
data = torch.rand(3, 3)
|
|
data_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
|
|
grad = torch.rand(3, 3)
|
|
grad_list = [torch.rand(3, 3) for i in range(LIST_LENGTH)]
|
|
|
|
|
|
def check_send_recv_forward():
|
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
|
device = torch.device('cuda:0')
|
|
data_to_send = data.to(device)
|
|
data_list_to_send = []
|
|
for data_in_list in data_list:
|
|
data_list_to_send.append(data_in_list.to(device))
|
|
send_forward(data_to_send)
|
|
send_forward(data_list_to_send)
|
|
else:
|
|
device = torch.device('cuda:1')
|
|
data_recv = recv_forward(TENSOR_SIZE)
|
|
data_list_recv = recv_forward(TENSOR_SIZE_LIST)
|
|
data_to_check = data.to(device)
|
|
assert data_recv.equal(data_to_check)
|
|
for data_recv, data_send in zip(data_list_recv, data_list):
|
|
data_to_check = data_send.to(device)
|
|
assert data_recv.equal(data_to_check)
|
|
|
|
|
|
def check_send_recv_backward():
|
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
|
device = torch.device('cuda:0')
|
|
grad_recv = recv_backward(TENSOR_SIZE)
|
|
grad_list_recv = recv_backward(TENSOR_SIZE_LIST)
|
|
grad_to_check = grad.to(device)
|
|
assert grad_recv.equal(grad_to_check)
|
|
for grad_recv, grad_send in zip(grad_list_recv, grad_list):
|
|
grad_to_check = grad_send.to(device)
|
|
assert grad_recv.equal(grad_to_check)
|
|
else:
|
|
device = torch.device('cuda:1')
|
|
grad_to_send = grad.to(device)
|
|
grad_list_to_send = []
|
|
for grad_in_list in grad_list:
|
|
grad_list_to_send.append(grad_in_list.to(device))
|
|
send_backward(grad_to_send)
|
|
send_backward(grad_list_to_send)
|
|
|
|
|
|
def check_send_recv_forward_backward():
|
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
|
device = torch.device('cuda:0')
|
|
data_list_to_send = []
|
|
for data_in_list in data_list:
|
|
data_list_to_send.append(data_in_list.to(device))
|
|
grad_list_recv = send_forward_recv_backward(data_list_to_send, TENSOR_SIZE_LIST)
|
|
|
|
for grad_recv, grad_send in zip(grad_list_recv, grad_list):
|
|
grad_to_check = grad_send.to(device)
|
|
assert grad_recv.equal(grad_to_check)
|
|
else:
|
|
device = torch.device('cuda:1')
|
|
grad_list_to_send = []
|
|
for grad_in_list in grad_list:
|
|
grad_list_to_send.append(grad_in_list.to(device))
|
|
data_list_recv = send_backward_recv_forward(grad_list_to_send, TENSOR_SIZE_LIST)
|
|
for data_recv, data_send in zip(data_list_recv, data_list):
|
|
data_to_check = data_send.to(device)
|
|
assert data_recv.equal(data_to_check)
|
|
|
|
|
|
def check_layer(rank, world_size, port):
|
|
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
check_send_recv_forward()
|
|
check_send_recv_backward()
|
|
check_send_recv_forward_backward()
|
|
gpc.destroy()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_object_list_p2p():
|
|
spawn(check_layer, 2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_object_list_p2p()
|