mirror of https://github.com/hpcaitech/ColossalAI
264 lines
11 KiB
Python
264 lines
11 KiB
Python
import math
|
|
import os
|
|
import time
|
|
from functools import partial
|
|
|
|
import torch
|
|
from arguments import parse_args
|
|
from evaluation import evaluate
|
|
from loss import LossForPretraining
|
|
from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider
|
|
from pretrain_utils import get_lr_scheduler, get_model, get_optimizer, save_ckpt
|
|
from tqdm import tqdm
|
|
from transformers import AutoTokenizer
|
|
from utils.exp_util import get_mem_info, get_tflops, log_args, throughput_calculator
|
|
from utils.global_vars import get_tensorboard_writer, get_timers, set_global_variables
|
|
from utils.logger import Logger
|
|
|
|
import colossalai
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.nn.parallel import GeminiDDP, zero_model_wrapper, zero_optim_wrapper
|
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
from colossalai.zero import ZeroOptimizer
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
launch_time = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
|
|
|
|
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
|
|
logger = Logger(os.path.join(args.log_path, launch_time), cuda=torch.cuda.is_available(), debug=args.vscode_debug)
|
|
|
|
if args.vscode_debug:
|
|
colossalai.launch(config={},
|
|
rank=args.rank,
|
|
world_size=args.world_size,
|
|
host=args.host,
|
|
port=args.port,
|
|
backend=args.backend)
|
|
args.local_rank = -1
|
|
args.log_interval = 1
|
|
else:
|
|
colossalai.launch_from_torch(config={}) #args.colossal_config
|
|
args.local_rank = int(os.environ["LOCAL_RANK"])
|
|
logger.info(
|
|
f'launch_from_torch, world size: {torch.distributed.get_world_size()} | ' +
|
|
f'ParallelMode.MODEL: {ParallelMode.MODEL} | ParallelMode.DATA: {ParallelMode.DATA} | ParallelMode.TENSOR: {ParallelMode.TENSOR}'
|
|
)
|
|
|
|
log_args(logger, args)
|
|
args.tokenizer = tokenizer
|
|
args.logger = logger
|
|
set_global_variables(launch_time, args.tensorboard_path)
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
init_dev = get_current_device()
|
|
|
|
# build model, optimizer and criterion
|
|
if args.distplan.startswith("CAI"):
|
|
# all param must use the same process group.
|
|
world_size = torch.distributed.get_world_size()
|
|
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
|
|
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
|
|
|
|
if args.shardinit and args.distplan != "CAI_Gemini":
|
|
raise RuntimeError("You can only use shardinit with CAI_Gemini")
|
|
|
|
# build GPT model
|
|
with ColoInitContext(device=get_current_device(),
|
|
dtype=torch.half,
|
|
default_dist_spec=default_dist_spec,
|
|
default_pg=shard_pg):
|
|
config, model, numel = get_model(args, logger)
|
|
|
|
# assign running configurations
|
|
gemini_config = None
|
|
if args.distplan.startswith("CAI_ZeRO"):
|
|
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
|
|
elif args.distplan == "CAI_Gemini":
|
|
gemini_config = dict(strict_ddp_mode=args.tp_degree == 1,
|
|
device=get_current_device(),
|
|
placement_policy=args.placement,
|
|
pin_memory=True,
|
|
hidden_dim=model.config.hidden_size,
|
|
search_range_m=128)
|
|
optim_config = dict(gpu_margin_mem_ratio=0.)
|
|
else:
|
|
raise RuntimeError
|
|
|
|
# build a highly optimized gpu/cpu optimizer
|
|
optimizer = get_optimizer(model, lr=args.lr)
|
|
|
|
if args.distplan == "CAI_ZeRO1":
|
|
zero_stage = 1
|
|
elif args.distplan == "CAI_ZeRO2":
|
|
zero_stage = 2
|
|
elif args.distplan == "CAI_Gemini":
|
|
zero_stage = 3
|
|
else:
|
|
raise RuntimeError
|
|
|
|
# wrap your model and optimizer
|
|
model = zero_model_wrapper(model, zero_stage, gemini_config)
|
|
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config)
|
|
|
|
logger.info(get_mem_info(prefix='After init optim, '))
|
|
|
|
else:
|
|
config, model, numel = get_model(args, logger)
|
|
logger.info("no_zero")
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
os.mkdir(os.path.join(args.ckpt_path, launch_time))
|
|
|
|
logger.info(f'Model numel: {numel}')
|
|
|
|
get_tflops_func = partial(get_tflops, numel, args.train_micro_batch_size_per_gpu, args.max_seq_length)
|
|
|
|
# 144003367 is is the length of the entire dataset
|
|
steps_per_epoch = 144003367 // world_size // args.train_micro_batch_size_per_gpu // args.gradient_accumulation_steps // args.refresh_bucket_size #len(dataloader)
|
|
total_steps = steps_per_epoch * args.epoch
|
|
|
|
lr_scheduler = get_lr_scheduler(optimizer, total_steps=total_steps, last_epoch=-1)
|
|
|
|
start_epoch = 0
|
|
start_shard = 0
|
|
global_step = 0
|
|
if args.resume_train:
|
|
assert os.path.exists(args.load_optimizer_lr)
|
|
o_l_state_dict = torch.load(args.load_optimizer_lr, map_location='cpu')
|
|
o_l_state_dict['lr_scheduler']['last_epoch'] = o_l_state_dict['lr_scheduler']['last_epoch'] - 1
|
|
optimizer.load_state_dict(o_l_state_dict['optimizer'])
|
|
# o_l_state_dict['lr_scheduler']['last_epoch']
|
|
lr_scheduler = get_lr_scheduler(optimizer,
|
|
total_steps=total_steps,
|
|
last_epoch=o_l_state_dict['lr_scheduler']['last_epoch'])
|
|
for state in optimizer.state.values():
|
|
for k, v in state.items():
|
|
if isinstance(v, torch.Tensor):
|
|
state[k] = v.cuda(f"cuda:{torch.cuda.current_device()}")
|
|
# if you want delete the above three code, must move the model to gpu. Because in optimizer.step()
|
|
lr_scheduler.load_state_dict(o_l_state_dict['lr_scheduler'])
|
|
|
|
start_epoch = o_l_state_dict['epoch']
|
|
start_shard = o_l_state_dict['shard'] + 1
|
|
# global_step = o_l_state_dict['global_step'] + 1
|
|
logger.info(
|
|
f'resume from epoch {start_epoch} shard {start_shard} step {lr_scheduler.last_epoch} lr {lr_scheduler.get_last_lr()[0]}'
|
|
)
|
|
|
|
criterion = LossForPretraining(config.vocab_size)
|
|
|
|
# build dataloader
|
|
pretrain_dataset_provider = NvidiaBertDatasetProvider(args)
|
|
|
|
logger.info(get_mem_info(prefix='After init model, '))
|
|
|
|
best_loss = None
|
|
eval_loss = 0
|
|
train_loss = 0
|
|
timers = get_timers()
|
|
timers('interval_time').start()
|
|
timers('epoch_time').start()
|
|
timers('shard_time').start()
|
|
|
|
for epoch in range(start_epoch, args.epoch):
|
|
|
|
for shard in range(start_shard, len(os.listdir(args.data_path_prefix))):
|
|
|
|
dataset_iterator, total_length = pretrain_dataset_provider.get_shard(shard)
|
|
# pretrain_dataset_provider.prefetch_shard(shard + 1) # may cause cpu memory overload
|
|
if torch.distributed.get_rank() == 0:
|
|
iterator_data = tqdm(enumerate(dataset_iterator),
|
|
total=(total_length // args.train_micro_batch_size_per_gpu // world_size),
|
|
colour='cyan',
|
|
smoothing=1)
|
|
else:
|
|
iterator_data = enumerate(dataset_iterator)
|
|
|
|
model.train()
|
|
|
|
for step, batch_data in iterator_data:
|
|
|
|
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
|
|
input_ids = batch_data[0].cuda(f"cuda:{torch.cuda.current_device()}")
|
|
attention_mask = batch_data[1].cuda(f"cuda:{torch.cuda.current_device()}")
|
|
token_type_ids = batch_data[2].cuda(f"cuda:{torch.cuda.current_device()}")
|
|
mlm_label = batch_data[3].cuda(f"cuda:{torch.cuda.current_device()}")
|
|
# nsp_label = batch_data[5].cuda()
|
|
|
|
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
|
|
|
loss = criterion(output.logits, mlm_label)
|
|
pretrain_dataset_provider.prefetch_batch()
|
|
|
|
optimizer.backward(loss)
|
|
train_loss += loss.float().item()
|
|
# if (step + 1) % args.accumulation_step == 0:
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
global_step += 1
|
|
|
|
if global_step % args.log_interval == 0 and global_step != 0 \
|
|
and torch.distributed.get_rank() == 0:
|
|
elapsed_time = timers('interval_time').elapsed(reset=False)
|
|
elapsed_time_per_iteration = elapsed_time / global_step
|
|
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(
|
|
numel, args, config, elapsed_time, global_step, world_size)
|
|
|
|
cur_loss = train_loss / args.log_interval
|
|
current_lr = lr_scheduler.get_last_lr()[0]
|
|
log_str = f'| epoch: {epoch} | shard: {shard} | step: {global_step} | lr {current_lr:.7f} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \
|
|
f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {math.exp(cur_loss):.3f} | TFLOPS: {get_tflops_func(elapsed_time_per_iteration):.3f} or {tflops:.3f}'
|
|
logger.info(log_str, print_=False)
|
|
|
|
if args.wandb:
|
|
tensorboard_log = get_tensorboard_writer()
|
|
tensorboard_log.log_train(
|
|
{
|
|
'lr': current_lr,
|
|
'loss': cur_loss,
|
|
'ppl': math.exp(cur_loss),
|
|
'mins_batch': elapsed_time_per_iteration
|
|
}, global_step)
|
|
|
|
train_loss = 0
|
|
|
|
logger.info(f'epoch {epoch} shard {shard} has cost {timers("shard_time").elapsed() / 60 :.3f} mins')
|
|
logger.info('*' * 100)
|
|
|
|
eval_loss += evaluate(model, args, logger, global_step, criterion)
|
|
save_ckpt(model, optimizer, lr_scheduler,
|
|
os.path.join(args.ckpt_path, launch_time, f'epoch-{epoch}_shard-{shard}_' + launch_time), epoch,
|
|
shard, global_step)
|
|
|
|
eval_loss /= len(os.listdir(args.data_path_prefix))
|
|
logger.info(
|
|
f'epoch {epoch} | shard_length {len(os.listdir(args.data_path_prefix))} | elapsed_time: {timers("epoch_time").elapsed() / 60 :.3f} mins'
|
|
+ f'eval_loss: {eval_loss} | ppl: {math.exp(eval_loss)}')
|
|
logger.info('-' * 100)
|
|
if args.wandb and torch.distributed.get_rank() == 0:
|
|
tensorboard_log = get_tensorboard_writer()
|
|
tensorboard_log.log_eval({
|
|
'all_eval_shard_loss': eval_loss,
|
|
}, epoch)
|
|
start_shard = 0
|
|
eval_loss = 0
|
|
|
|
pretrain_dataset_provider.release_shard()
|
|
|
|
logger.info('Congratulation, training has finished!!!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|