ColossalAI/examples/community/roberta/pretraining/nvidia_bert_dataset_provide...

171 lines
6.4 KiB
Python

import json
import logging
import os
import random
import time
from concurrent.futures import ProcessPoolExecutor
import h5py
import numpy as np
import torch
import torch.distributed as dist
from bert_dataset_provider import BertDatasetProviderInterface
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler
import colossalai.utils as utils
# Workaround because python functions are not picklable
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_predictions_per_seq, num_workers, train_batch_size, worker_init,
data_sampler):
train_data = pretraining_dataset(input_file=input_file, max_predictions_per_seq=max_predictions_per_seq)
train_dataloader = DataLoader(train_data,
sampler=data_sampler(train_data),
batch_size=train_batch_size,
num_workers=num_workers,
worker_init_fn=worker_init,
pin_memory=True)
return train_dataloader, len(train_data)
class pretraining_dataset(Dataset):
def __init__(self, input_file, max_predictions_per_seq):
self.input_file = input_file
self.max_predictions_per_seq = max_predictions_per_seq
f = h5py.File(input_file, "r")
keys = ['input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions']
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
'Denotes the total number of samples'
return len(self.inputs[0])
def __getitem__(self, index):
[input_ids, input_mask, segment_ids, masked_lm_labels] = [
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(
np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)
]
return [input_ids, input_mask, segment_ids, masked_lm_labels]
class NvidiaBertDatasetProvider(BertDatasetProviderInterface):
def __init__(self, args, evaluate=False):
self.num_workers = args.num_workers
self.max_seq_length = args.max_seq_length
self.max_predictions_per_seq = args.max_predictions_per_seq
self.gradient_accumulation_steps = args.gradient_accumulation_steps
if not evaluate:
self.train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
else:
self.train_micro_batch_size_per_gpu = args.eval_micro_batch_size_per_gpu
self.logger = args.logger
self.global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
# Initialize dataset files
if not evaluate:
self.dataset_files = [
os.path.join(args.data_path_prefix, f)
for f in os.listdir(args.data_path_prefix)
if os.path.isfile(os.path.join(args.data_path_prefix, f)) and 'h5' in f
]
else:
self.dataset_files = [
os.path.join(args.eval_data_path_prefix, f)
for f in os.listdir(args.eval_data_path_prefix)
if os.path.isfile(os.path.join(args.eval_data_path_prefix, f)) and 'h5' in f
]
self.dataset_files.sort()
# random.shuffle(self.dataset_files)
self.num_files = len(self.dataset_files)
# self.data_sampler = RandomSampler
self.data_sampler = DistributedSampler
self.worker_init = WorkerInitObj(args.seed + args.local_rank)
self.dataset_future = None
self.pool = ProcessPoolExecutor(1)
self.data_file = None
self.shuffle = True
if self.global_rank == 0:
self.logger.info(f"NvidiaBertDatasetProvider - Initialization: num_files = {self.num_files}")
def get_shard(self, index):
start = time.time()
if self.dataset_future is None:
self.data_file = self._get_shard_file(index)
self.train_dataloader, sample_count = create_pretraining_dataset(
input_file=self.data_file,
max_predictions_per_seq=self.max_predictions_per_seq,
num_workers=self.num_workers,
train_batch_size=self.train_micro_batch_size_per_gpu,
worker_init=self.worker_init,
data_sampler=self.data_sampler)
else:
self.train_dataloader, sample_count = self.dataset_future.result(timeout=None)
self.logger.info(
f"Data Loading Completed for Pretraining Data from {self.data_file} with {sample_count} samples took {time.time()-start:.2f}s."
)
return self.train_dataloader, sample_count
def release_shard(self):
del self.train_dataloader
self.pool.shutdown()
def prefetch_shard(self, index):
self.data_file = self._get_shard_file(index)
self.dataset_future = self.pool.submit(create_pretraining_dataset, self.data_file, self.max_predictions_per_seq,
self.num_workers, self.train_micro_batch_size_per_gpu, self.worker_init,
self.data_sampler)
def get_batch(self, batch_iter):
return batch_iter
def prefetch_batch(self):
pass
def _get_shard_file(self, shard_index):
file_index = self._get_shard_file_index(shard_index, self.global_rank)
return self.dataset_files[file_index]
def _get_shard_file_index(self, shard_index, global_rank):
# if dist.is_initialized() and self.world_size > self.num_files:
# remainder = self.world_size % self.num_files
# file_index = (shard_index * self.world_size) + global_rank + (
# remainder * shard_index)
# else:
# file_index = shard_index * self.world_size + global_rank
return shard_index % self.num_files
def shuffle_dataset(self, epoch):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(self.num_files, generator=g).tolist()
new_dataset = [self.dataset_files[i] for i in indices]
self.dataset_files = new_dataset