ColossalAI/examples/community/roberta/pretraining/arguments.py

88 lines
4.4 KiB
Python

from numpy import require
import colossalai
__all__ = ['parse_args']
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--distplan",
type=str,
default='CAI_Gemini',
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default='cpu',
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
action='store_true',
help=
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument('--lr', type=float, required=True, help='initial learning rate')
parser.add_argument('--epoch', type=int, required=True, help='number of epoch')
parser.add_argument('--data_path_prefix', type=str, required=True, help="location of the train data corpus")
parser.add_argument('--eval_data_path_prefix',
type=str,
required=True,
help='location of the evaluation data corpus')
parser.add_argument('--tokenizer_path', type=str, required=True, help='location of the tokenizer')
parser.add_argument('--max_seq_length', type=int, default=512, help='sequence length')
parser.add_argument('--refresh_bucket_size',
type=int,
default=1,
help="This param makes sure that a certain task is repeated for this time steps to \
optimize on the back propagation speed with APEX's DistributedDataParallel")
parser.add_argument("--max_predictions_per_seq",
"--max_pred",
default=80,
type=int,
help="The maximum number of masked tokens in a sequence to be predicted.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="accumulation_steps")
parser.add_argument("--train_micro_batch_size_per_gpu", default=2, type=int, required=True, help="train batch size")
parser.add_argument("--eval_micro_batch_size_per_gpu", default=2, type=int, required=True, help="eval batch size")
parser.add_argument("--num_workers", default=8, type=int, help="")
parser.add_argument("--async_worker", action='store_true', help="")
parser.add_argument("--bert_config", required=True, type=str, help="location of config.json")
parser.add_argument("--wandb", action='store_true', help="use wandb to watch model")
parser.add_argument("--wandb_project_name", default='roberta', help="wandb project name")
parser.add_argument("--log_interval", default=100, type=int, help="report interval")
parser.add_argument("--log_path", type=str, required=True, help="log file which records train step")
parser.add_argument("--tensorboard_path", type=str, required=True, help="location of tensorboard file")
parser.add_argument("--colossal_config",
type=str,
required=True,
help="colossal config, which contains zero config and so on")
parser.add_argument("--ckpt_path",
type=str,
required=True,
help="location of saving checkpoint, which contains model and optimizer")
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument('--vscode_debug', action='store_true', help="use vscode to debug")
parser.add_argument('--load_pretrain_model', default='', type=str, help="location of model's checkpoint")
parser.add_argument(
'--load_optimizer_lr',
default='',
type=str,
help="location of checkpoint, which contains optimizer, learning rate, epoch, shard and global_step")
parser.add_argument('--resume_train', action='store_true', help="whether resume training from a early checkpoint")
parser.add_argument('--mlm', default='bert', type=str, help="model type, bert or deberta")
parser.add_argument('--checkpoint_activations', action='store_true', help="whether to use gradient checkpointing")
args = parser.parse_args()
return args