ColossalAI/colossalai/engine/gradient_handler/_moe_gradient_handler.py

47 lines
2.1 KiB
Python

from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from colossalai.utils.moe import get_moe_epsize_param_dict
from ...context.parallel_mode import ParallelMode
from ._base_gradient_handler import BaseGradientHandler
from .utils import bucket_allreduce
@GRADIENT_HANDLER.register_module
class MoeGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in a data parallel group and
moe model parallel. A all-reduce collective communication will be operated in
:func:`handle_gradient` among a data parallel group.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
Args:
model (Module): Model where the gradients accumulate.
optimizer (Optimizer): Optimizer for updating the parameters.
"""
def __init__(self, model, optimizer=None):
super().__init__(model, optimizer)
def handle_gradient(self):
"""A method running an all-reduce operation in a data parallel group.
Then running an all-reduce operation for all parameters in experts
across moe model parallel group
"""
global_data = gpc.data_parallel_size
if global_data > 1:
epsize_param_dict = get_moe_epsize_param_dict(self._model)
# epsize is 1, indicating the params are replicated among processes in data parallelism
# use the ParallelMode.DATA to get data parallel group
# reduce gradients for all parameters in data parallelism
if 1 in epsize_param_dict:
bucket_allreduce(param_list=epsize_param_dict[1], group=gpc.get_group(ParallelMode.DATA))
for ep_size in epsize_param_dict:
if ep_size != 1 and ep_size != MOE_CONTEXT.world_size:
bucket_allreduce(param_list=epsize_param_dict[ep_size],
group=MOE_CONTEXT.parallel_info_dict[ep_size].dp_group)