ColossalAI/colossalai/utils/tensor_detector
LuGY a9c27be42e
Added tensor detector (#393)
* Added tensor detector

* Added the - states

* Allowed change include_cpu when detect()
2022-03-14 18:01:46 +08:00
..
__init__.py Added tensor detector (#393) 2022-03-14 18:01:46 +08:00
readme.md Added tensor detector (#393) 2022-03-14 18:01:46 +08:00
tensor_detector.py Added tensor detector (#393) 2022-03-14 18:01:46 +08:00

readme.md

Tensor Detector

This tool supports you to detect tensors on both CPU and GPU. However, there will always be some strange tensors on CPU, including the rng state of PyTorch.

Example

An example is worth than a thousand words.

The code below defines a simple MLP module, with which we will show you how to use the tool.

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = nn.Sequential(nn.Linear(64, 8),
                                 nn.ReLU(),
                                 nn.Linear(8, 32))   
    def forward(self, x):
        return self.mlp(x)

And here is how to use the tool.

from colossalai.utils import TensorDetector

# create random data
data = torch.rand(64, requires_grad=True).cuda()
data.retain_grad()
# create the module
model = MLP().cuda()
# create the detector
# by passing the model to the detector, it can distinguish module parameters from common tensors
detector = TensorDetector(include_cpu=False, module=model)
detector.detect()

out = model(data)

detector.detect()

loss = out.sum()
loss.backward()

detector.detect()

I have made some comments on the right of the output for your understanding.

Note that the total Mem of all the tensors and parameters is not equal to Total GPU Memery Allocated. PyTorch's memory management is really complicated, and for models of a large scale, it's impossible to figure out clearly.

The order of print is not equal to the order the tensor creates, but they are really close.

------------------------------------------------------------------------------------------------------------
   Tensor                            device               shape      grad               dtype            Mem
------------------------------------------------------------------------------------------------------------
+  Tensor                            cuda:0               (64,)      True       torch.float32          256 B    # data
+  mlp.0.weight                      cuda:0             (8, 64)      True       torch.float32         2.0 KB
+  mlp.0.bias                        cuda:0                (8,)      True       torch.float32           32 B
+  mlp.2.weight                      cuda:0             (32, 8)      True       torch.float32         1.0 KB
+  mlp.2.bias                        cuda:0               (32,)      True       torch.float32          128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 27
Totle GPU Memery Allocated on cuda:0 is 4.5 KB
------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------------------------------
   Tensor                            device               shape      grad               dtype            Mem
------------------------------------------------------------------------------------------------------------
+  Tensor                            cuda:0                (8,)      True       torch.float32           32 B    # activation
+  Tensor                            cuda:0               (32,)      True       torch.float32          128 B    # output
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 30
Totle GPU Memery Allocated on cuda:0 is 5.5 KB
------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------------------------------
   Tensor                            device               shape      grad               dtype            Mem
------------------------------------------------------------------------------------------------------------
+  Tensor                            cuda:0                  ()      True       torch.float32            4 B    # loss
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 32
Totle GPU Memery Allocated on cuda:0 is 6.0 KB
------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------------------------------
   Tensor                            device               shape      grad               dtype            Mem
------------------------------------------------------------------------------------------------------------
+  Tensor (with grad)                cuda:0               (64,)      True       torch.float32          512 B    # data with grad
+  mlp.0.weight (with grad)          cuda:0             (8, 64)      True       torch.float32         4.0 KB    # for use data.retain_grad()
+  mlp.0.bias (with grad)            cuda:0                (8,)      True       torch.float32           64 B
+  mlp.2.weight (with grad)          cuda:0             (32, 8)      True       torch.float32         2.0 KB
+  mlp.2.bias (with grad)            cuda:0               (32,)      True       torch.float32          256 B

-  mlp.0.weight                      cuda:0             (8, 64)      True       torch.float32         2.0 KB
-  mlp.0.bias                        cuda:0                (8,)      True       torch.float32           32 B
-  mlp.2.weight                      cuda:0             (32, 8)      True       torch.float32         1.0 KB
-  mlp.2.bias                        cuda:0               (32,)      True       torch.float32          128 B
-  Tensor                            cuda:0               (64,)      True       torch.float32          256 B
-  Tensor                            cuda:0                (8,)      True       torch.float32           32 B    # deleted activation
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 34
Totle GPU Memery Allocated on cuda:0 is 10.0 KB
------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------------------------------
   Tensor                            device               shape      grad               dtype            Mem
------------------------------------------------------------------------------------------------------------
+  Tensor                            cuda:0               (64,)     False       torch.float32          256 B
+  Tensor                            cuda:0             (8, 64)     False       torch.float32         2.0 KB
+  Tensor                            cuda:0                (8,)     False       torch.float32           32 B
+  Tensor                            cuda:0             (32, 8)     False       torch.float32         1.0 KB
+  Tensor                            cuda:0               (32,)     False       torch.float32          128 B
------------------------------------------------------------------------------------------------------------
Detect Location: "test_tensor_detector.py" line 36
Totle GPU Memery Allocated on cuda:0 is 14.0 KB
------------------------------------------------------------------------------------------------------------

Reference

This tool was inspired by https://github.com/Stonesjtu/pytorch_memlab/blob/master/pytorch_memlab/mem_reporter.py and https://github.com/Oldpan/Pytorch-Memory-Utils