You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/metric/accuracy_3d.py

34 lines
1.2 KiB

import torch
from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D
from colossalai.nn.layer.parallel_3d import reduce_by_batch_3d, split_tensor_3d
from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env
from torch import nn
from ._utils import calc_acc
class Accuracy3D(nn.Module):
"""Accuracy for 3D parallelism
"""
def __init__(self):
super().__init__()
self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
def forward(self, logits, targets):
"""Calculate the accuracy of predicted labels.
Args:
logits (:class:`torch.tensor`): Predicted labels.
targets (:class:`torch.tensor`): True labels from data.
Returns:
float: the accuracy of prediction.
"""
with torch.no_grad():
targets = split_tensor_3d(targets, 0, self.weight_parallel_mode)
targets = split_tensor_3d(targets, 0, self.input_parallel_mode)
correct = calc_acc(logits, targets)
correct = reduce_by_batch_3d(correct, self.input_parallel_mode, self.weight_parallel_mode)
return correct