mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
2.3 KiB
92 lines
2.3 KiB
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import collections.abc
|
|
from itertools import repeat
|
|
|
|
import numpy as np
|
|
import torch
|
|
from colossalai.constants import IS_TENSOR_PARALLEL, NUM_PARTITIONS
|
|
from colossalai.global_variables import tensor_parallel_env as env
|
|
from colossalai.utils import checkpoint
|
|
from torch import Tensor, nn
|
|
|
|
|
|
class CheckpointModule(nn.Module):
|
|
|
|
def __init__(self, checkpoint: bool = True, offload: bool = False):
|
|
super().__init__()
|
|
self.checkpoint = checkpoint
|
|
self._use_checkpoint = checkpoint
|
|
self._offload = offload
|
|
|
|
def _forward(self, *args, **kwargs):
|
|
raise NotImplementedError('CheckpointModule should implement _forward method instead of origin forward')
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self._use_checkpoint:
|
|
return checkpoint(self._forward, self._offload, *args, **kwargs)
|
|
else:
|
|
return self._forward(*args, **kwargs)
|
|
|
|
def train(self, mode: bool = True):
|
|
self._use_checkpoint = self.checkpoint
|
|
return super().train(mode=mode)
|
|
|
|
def eval(self):
|
|
self._use_checkpoint = False
|
|
return super().eval()
|
|
|
|
|
|
def divide(numerator, denominator):
|
|
"""Only allow exact division.
|
|
|
|
Args:
|
|
numerator (int): Numerator of the division.
|
|
denominator (int): Denominator of the division.
|
|
|
|
Returns:
|
|
int: the result of exact division.
|
|
"""
|
|
assert denominator != 0, 'denominator can not be zero'
|
|
assert numerator % denominator == 0, \
|
|
'{} is not divisible by {}'.format(numerator, denominator)
|
|
return numerator // denominator
|
|
|
|
|
|
def swish(x: Tensor) -> Tensor:
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
|
|
|
|
|
def set_tensor_parallel_attribute_by_size(param, size):
|
|
setattr(param, IS_TENSOR_PARALLEL, True)
|
|
setattr(param, NUM_PARTITIONS, size // np.prod(param.shape))
|
|
|
|
|
|
def set_tensor_parallel_attribute_by_partition(param, num_partitions):
|
|
setattr(param, IS_TENSOR_PARALLEL, True)
|
|
setattr(param, NUM_PARTITIONS, num_partitions)
|
|
|
|
|
|
def get_tensor_parallel_mode():
|
|
return env.mode
|
|
|
|
|
|
# From PyTorch internals
|
|
|
|
|
|
def _ntuple(n):
|
|
|
|
def parse(x):
|
|
if isinstance(x, collections.abc.Iterable):
|
|
return x
|
|
return tuple(repeat(x, n))
|
|
|
|
return parse
|
|
|
|
|
|
to_2tuple = _ntuple(2)
|