You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/layer/colossalai_layer/linear.py

147 lines
5.8 KiB

import math
import inspect
from typing import Callable
from colossalai.utils import get_current_device
from torch import dtype, nn
from ... import init as init
from ..parallel_1d import *
from ..parallel_2d import *
from ..parallel_2p5d import *
from ..parallel_3d import *
from ..utils import get_tensor_parallel_mode
from ..vanilla import *
from ._utils import ColossalaiModule
_parallel_linear = {'1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
_parallel_classifier = {
None: VanillaClassifier,
'1d': Classifier1D,
'2d': Classifier2D,
'2.5d': Classifier2p5D,
'3d': Classifier3D
}
_vocab_parallel_classifier = {
'1d': VocabParallelClassifier1D,
'2d': VocabParallelClassifier2D,
'2.5d': VocabParallelClassifier2p5D,
'3d': VocabParallelClassifier3D
}
class Linear(ColossalaiModule):
"""Linear layer of colossalai.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
Note: ``kwargs`` would contain different parameters when you use different parallelisms.
The ``kwargs`` should contain parameters below:
::
Linear1D:
gather_output: bool (optional, default to be false)
skip_bias_add: bool (optional, default to be false)
Linear2D:
skip_bias_add: bool (optional, default to be false)
Linear2p5D:
skip_bias_add: bool (optional, default to be false)
Linear3D:
None
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
**kwargs) -> None:
tensor_parallel = get_tensor_parallel_mode()
if tensor_parallel is None:
layer = nn.Linear(in_features, out_features, bias=bias).to(dtype).to(get_current_device())
weight_initializer(layer.weight, fan_in=in_features, fan_out=out_features)
if layer.bias is not None:
bias_initializer(layer.bias, fan_in=in_features)
else:
linear_cls = _parallel_linear[tensor_parallel]
gather_output = kwargs.pop('gather_output', None)
if 'gather_output' in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
kwargs['gather_output'] = gather_output
layer = linear_cls(
in_features,
out_features,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
**kwargs,
)
super().__init__(layer)
class Classifier(ColossalaiModule):
"""Classifier layer of colossalai.
Args:
in_features (int): size of each input sample.
num_classes (int): number of classes.
weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
vocab_parallel_limit: int = 2048) -> None:
tensor_parallel = get_tensor_parallel_mode()
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
layer = _parallel_classifier[tensor_parallel](
in_features,
num_classes,
weight=weight,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
else:
layer = _vocab_parallel_classifier[tensor_parallel](
in_features,
num_classes,
weight=weight,
bias=bias,
dtype=dtype,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
)
super().__init__(layer)