ColossalAI/colossalai/gemini/memory_tracer/param_tracer_wrapper.py

52 lines
1.8 KiB
Python

import torch.nn
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.tensor.param_op_hook import ParamOpHookManager
from colossalai.gemini.ophooks.param_trace_hook import ParamTracerHook
from colossalai.nn.parallel.data_parallel import _cast_float
__all__ = ['ParamTracerWrapper']
class ParamTracerWrapper():
def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half):
super().__init__()
self.module = module
self.dtype = dtype
self.param_op_hook = ParamTracerHook()
for p in module.parameters():
assert isinstance(p, ColoParameter)
p.data = p.data.to(dtype)
self._cast_buffers_to_cuda_dtype()
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def _pre_forward(self):
self.param_op_hook.mem_monitor.start()
def forward(self, *args, **kwargs):
args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype)
self.module.zero_grad(set_to_none=True)
self._pre_forward()
with ParamOpHookManager.use_hooks(self.param_op_hook):
outputs = self.module(*args, **kwargs)
return outputs
def backward(self, loss):
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
loss.backward()
self._post_backward()
def _post_backward(self):
cuda_volume = self.param_op_hook.mem_monitor.finish()
last_model_data = self.param_op_hook._model_data_list[-1]
self.param_op_hook._non_model_data_list.append(cuda_volume - last_model_data)
def _cast_buffers_to_cuda_dtype(self):
for buffer in self.module.buffers():
buffer.data = buffer.cuda()
if torch.is_floating_point(buffer):
buffer.data = buffer.data.to(self.dtype)