mirror of https://github.com/hpcaitech/ColossalAI
282 lines
9.5 KiB
Python
282 lines
9.5 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT Style dataset."""
|
|
|
|
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
from colossalai.legacy.context import ParallelMode
|
|
from colossalai.legacy.core import global_context as gpc
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from ..tokenizer import get_tokenizer
|
|
from .dataset_utils import (
|
|
create_masked_lm_predictions,
|
|
create_tokens_and_tokentypes,
|
|
get_a_and_b_segments,
|
|
pad_and_convert_to_numpy,
|
|
truncate_segments,
|
|
)
|
|
|
|
try:
|
|
from . import helpers
|
|
except:
|
|
print("helper is not built, ignore this message if you are using synthetic data.")
|
|
|
|
|
|
class BertDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
name,
|
|
indexed_dataset,
|
|
data_prefix,
|
|
num_epochs,
|
|
max_num_samples,
|
|
masked_lm_prob,
|
|
max_seq_length,
|
|
short_seq_prob,
|
|
seed,
|
|
binary_head,
|
|
):
|
|
# Params to store.
|
|
self.name = name
|
|
self.seed = seed
|
|
self.masked_lm_prob = masked_lm_prob
|
|
self.max_seq_length = max_seq_length
|
|
self.binary_head = binary_head
|
|
|
|
# Dataset.
|
|
self.indexed_dataset = indexed_dataset
|
|
|
|
# Build the samples mapping.
|
|
self.samples_mapping = get_samples_mapping_(
|
|
self.indexed_dataset,
|
|
data_prefix,
|
|
num_epochs,
|
|
max_num_samples,
|
|
self.max_seq_length - 3, # account for added tokens,
|
|
short_seq_prob,
|
|
self.seed,
|
|
self.name,
|
|
self.binary_head,
|
|
)
|
|
|
|
# Vocab stuff.
|
|
tokenizer = get_tokenizer()
|
|
self.vocab_id_list = list(tokenizer.inv_vocab.keys())
|
|
self.vocab_id_to_token_dict = tokenizer.inv_vocab
|
|
self.cls_id = tokenizer.cls
|
|
self.sep_id = tokenizer.sep
|
|
self.mask_id = tokenizer.mask
|
|
self.pad_id = tokenizer.pad
|
|
|
|
def __len__(self):
|
|
return self.samples_mapping.shape[0]
|
|
|
|
def __getitem__(self, idx):
|
|
start_idx, end_idx, seq_length = self.samples_mapping[idx]
|
|
sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
|
|
# Note that this rng state should be numpy and not python since
|
|
# python randint is inclusive whereas the numpy one is exclusive.
|
|
# We % 2**32 since numpy requires the seed to be between 0 and 2**32 - 1
|
|
np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32))
|
|
return build_training_sample(
|
|
sample,
|
|
seq_length,
|
|
self.max_seq_length, # needed for padding
|
|
self.vocab_id_list,
|
|
self.vocab_id_to_token_dict,
|
|
self.cls_id,
|
|
self.sep_id,
|
|
self.mask_id,
|
|
self.pad_id,
|
|
self.masked_lm_prob,
|
|
np_rng,
|
|
self.binary_head,
|
|
)
|
|
|
|
|
|
def get_samples_mapping_(
|
|
indexed_dataset, data_prefix, num_epochs, max_num_samples, max_seq_length, short_seq_prob, seed, name, binary_head
|
|
):
|
|
logger = get_dist_logger()
|
|
if not num_epochs:
|
|
if not max_num_samples:
|
|
raise ValueError("Need to specify either max_num_samples " "or num_epochs")
|
|
num_epochs = np.iinfo(np.int32).max - 1
|
|
if not max_num_samples:
|
|
max_num_samples = np.iinfo(np.int64).max - 1
|
|
|
|
# Filename of the index mapping
|
|
indexmap_filename = data_prefix
|
|
indexmap_filename += "_{}_indexmap".format(name)
|
|
if num_epochs != (np.iinfo(np.int32).max - 1):
|
|
indexmap_filename += "_{}ep".format(num_epochs)
|
|
if max_num_samples != (np.iinfo(np.int64).max - 1):
|
|
indexmap_filename += "_{}mns".format(max_num_samples)
|
|
indexmap_filename += "_{}msl".format(max_seq_length)
|
|
indexmap_filename += "_{:0.2f}ssp".format(short_seq_prob)
|
|
indexmap_filename += "_{}s".format(seed)
|
|
indexmap_filename += ".npy"
|
|
|
|
# Build the indexed mapping if not exist.
|
|
if torch.distributed.get_rank() == 0 and not os.path.isfile(indexmap_filename):
|
|
print(
|
|
" > WARNING: could not find index map file {}, building "
|
|
"the indices on rank 0 ...".format(indexmap_filename)
|
|
)
|
|
|
|
# Make sure the types match the helpers input types.
|
|
assert indexed_dataset.doc_idx.dtype == np.int64
|
|
assert indexed_dataset.sizes.dtype == np.int32
|
|
|
|
# Build samples mapping
|
|
verbose = torch.distributed.get_rank() == 0
|
|
start_time = time.time()
|
|
logger.info("\n > building samples index mapping for {} ...".format(name), ranks=[0])
|
|
# First compile and then import.
|
|
samples_mapping = helpers.build_mapping(
|
|
indexed_dataset.doc_idx,
|
|
indexed_dataset.sizes,
|
|
num_epochs,
|
|
max_num_samples,
|
|
max_seq_length,
|
|
short_seq_prob,
|
|
seed,
|
|
verbose,
|
|
2 if binary_head else 1,
|
|
)
|
|
logger.info("\n > done building samples index maping", ranks=[0])
|
|
np.save(indexmap_filename, samples_mapping, allow_pickle=True)
|
|
logger.info("\n > saved the index mapping in {}".format(indexmap_filename), ranks=[0])
|
|
# Make sure all the ranks have built the mapping
|
|
logger.info(
|
|
"\n > elapsed time to build and save samples mapping " "(seconds): {:4f}".format(time.time() - start_time),
|
|
ranks=[0],
|
|
)
|
|
# This should be a barrier but nccl barrier assumes
|
|
# device_index=rank which is not the case for model
|
|
# parallel case
|
|
counts = torch.cuda.LongTensor([1])
|
|
torch.distributed.all_reduce(counts, group=gpc.get_group(ParallelMode.DATA))
|
|
if gpc.is_initialized(ParallelMode.PIPELINE):
|
|
torch.distributed.all_reduce(counts, group=gpc.get_group(ParallelMode.PIPELINE))
|
|
assert counts[0].item() == (
|
|
torch.distributed.get_world_size()
|
|
// torch.distributed.get_world_size(group=gpc.get_group(ParallelMode.SEQUENCE))
|
|
)
|
|
|
|
# Load indexed dataset.
|
|
start_time = time.time()
|
|
samples_mapping = np.load(indexmap_filename, allow_pickle=True, mmap_mode="r")
|
|
logger.info(
|
|
"\n > loading indexed mapping from {}".format(indexmap_filename)
|
|
+ "\n loaded indexed file in {:3.3f} seconds".format(time.time() - start_time)
|
|
+ "\n total number of samples: {}".format(samples_mapping.shape[0]),
|
|
ranks=[0],
|
|
)
|
|
|
|
return samples_mapping
|
|
|
|
|
|
def build_training_sample(
|
|
sample,
|
|
target_seq_length,
|
|
max_seq_length,
|
|
vocab_id_list,
|
|
vocab_id_to_token_dict,
|
|
cls_id,
|
|
sep_id,
|
|
mask_id,
|
|
pad_id,
|
|
masked_lm_prob,
|
|
np_rng,
|
|
binary_head,
|
|
):
|
|
"""Build training sample.
|
|
|
|
Arguments:
|
|
sample: A list of sentences in which each sentence is a list token ids.
|
|
target_seq_length: Desired sequence length.
|
|
max_seq_length: Maximum length of the sequence. All values are padded to
|
|
this length.
|
|
vocab_id_list: List of vocabulary ids. Used to pick a random id.
|
|
vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
|
|
cls_id: Start of example id.
|
|
sep_id: Separator id.
|
|
mask_id: Mask token id.
|
|
pad_id: Padding token id.
|
|
masked_lm_prob: Probability to mask tokens.
|
|
np_rng: Random number genenrator. Note that this rng state should be
|
|
numpy and not python since python randint is inclusive for
|
|
the opper bound whereas the numpy one is exclusive.
|
|
"""
|
|
|
|
if binary_head:
|
|
# We assume that we have at least two sentences in the sample
|
|
assert len(sample) > 1
|
|
assert target_seq_length <= max_seq_length
|
|
|
|
# Divide sample into two segments (A and B).
|
|
if binary_head:
|
|
tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng)
|
|
else:
|
|
tokens_a = []
|
|
for j in range(len(sample)):
|
|
tokens_a.extend(sample[j])
|
|
tokens_b = []
|
|
is_next_random = False
|
|
|
|
# Truncate to `target_sequence_length`.
|
|
max_num_tokens = target_seq_length
|
|
truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a), len(tokens_b), max_num_tokens, np_rng)
|
|
|
|
# Build tokens and toketypes.
|
|
tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id)
|
|
|
|
# Masking.
|
|
max_predictions_per_seq = masked_lm_prob * max_num_tokens
|
|
(tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
|
|
tokens,
|
|
vocab_id_list,
|
|
vocab_id_to_token_dict,
|
|
masked_lm_prob,
|
|
cls_id,
|
|
sep_id,
|
|
mask_id,
|
|
max_predictions_per_seq,
|
|
np_rng,
|
|
)
|
|
|
|
# Padding.
|
|
tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np = pad_and_convert_to_numpy(
|
|
tokens, tokentypes, masked_positions, masked_labels, pad_id, max_seq_length
|
|
)
|
|
|
|
train_sample = {
|
|
"text": tokens_np,
|
|
"types": tokentypes_np,
|
|
"labels": labels_np,
|
|
"is_random": int(is_next_random),
|
|
"loss_mask": loss_mask_np,
|
|
"padding_mask": padding_mask_np,
|
|
"truncated": int(truncated),
|
|
}
|
|
return train_sample
|