mirror of https://github.com/hpcaitech/ColossalAI
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
|
|
import colossalai
|
|
from colossalai.gemini.chunk import ChunkManager, search_chunk_configuration
|
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
|
from colossalai.nn.parallel import ZeroDDP
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
|
from colossalai.utils import free_port
|
|
from colossalai.utils.cuda import get_current_device
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from tests.test_tensor.common_utils import debug_print, set_seed
|
|
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
|
@parameterize('keep_gathered', [True, False])
|
|
def exam_zero_optim_state_dict(placement_policy, keep_gathered):
|
|
set_seed(431)
|
|
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
model = model_builder()
|
|
|
|
set_seed(451)
|
|
torch_model = model_builder() # get a different model
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
config_dict[world_size]['keep_gathered'] = keep_gathered
|
|
|
|
if placement_policy != 'cuda':
|
|
init_device = torch.device('cpu')
|
|
else:
|
|
init_device = None
|
|
chunk_manager = ChunkManager(config_dict, init_device=init_device)
|
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
|
model = ZeroDDP(model, gemini_manager, pin_memory=True)
|
|
|
|
optimizer = HybridAdam(model.parameters())
|
|
optim = ZeroOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32
|
|
|
|
set_seed(dist.get_rank() * 3 + 128)
|
|
model.train()
|
|
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
|
|
if i > 0:
|
|
break
|
|
optim.zero_grad()
|
|
logits = model(input_ids, attn_mask)
|
|
logits = logits.float()
|
|
loss = criterion(logits, input_ids)
|
|
optim.backward(loss)
|
|
optim.step()
|
|
|
|
optim_state_dict = optim.state_dict()
|
|
optim.load_state_dict(optim_state_dict)
|
|
new_state = optim.state_dict()['state']
|
|
org_state = optim_state_dict['state']
|
|
|
|
for k, v in org_state.items():
|
|
w = new_state[k]
|
|
for n, m in v.items():
|
|
if isinstance(m, torch.Tensor):
|
|
o = w[n]
|
|
if m.device != o.device:
|
|
o = o.to(m.device)
|
|
assert torch.equal(m, o)
|
|
else:
|
|
assert m == w[n]
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
config = {}
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
exam_zero_optim_state_dict()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
@rerun_if_address_is_in_use()
|
|
def test_zero_optim(world_size):
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_zero_optim(1)
|