mirror of https://github.com/hpcaitech/ColossalAI
123 lines
4.2 KiB
Python
123 lines
4.2 KiB
Python
from collections import OrderedDict
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from coati.models.lora import LoraLinear
|
|
from loralib.layers import LoRALayer
|
|
|
|
|
|
@dataclass
|
|
class LoRAConfig:
|
|
r: int = 0
|
|
lora_alpha: int = 1
|
|
lora_dropout: float = 0
|
|
fan_in_fan_out: bool = False
|
|
|
|
|
|
class LoRAConstructor:
|
|
'''
|
|
Tools for reconstructing a model from a remote LoRA model.
|
|
(Transferring only LoRA data costs much less!)
|
|
Usage:
|
|
Step 1 (Sender):
|
|
filter_state_dict_lora()
|
|
|
|
Step 2 (Sender, Optional):
|
|
extract_lora_config()
|
|
|
|
Step 3 (Sender):
|
|
send state_dict_lora and lora_config_dict
|
|
|
|
Step 4 (Receiver):
|
|
reconstruct_increase()
|
|
|
|
Step 5 (Receiver):
|
|
load_state_dict_increase()
|
|
|
|
'''
|
|
|
|
def __init__(self):
|
|
self.lora_config_dict = None
|
|
|
|
def register_lora_config(self, lora_config_dict: Dict[str, Any]):
|
|
self.lora_config_dict = lora_config_dict
|
|
|
|
def reconstruct_increase(self, state_dict_lora: Dict[str, Any], lora_config_dict: Dict[str, Any]):
|
|
'''
|
|
xxx.lora_A, xxx.lora_B -->> xxx.weight
|
|
Warning: the xxx.weight here is the increment actually.
|
|
'''
|
|
if lora_config_dict is not None:
|
|
self.register_lora_config(lora_config_dict)
|
|
|
|
state_dict_increase = OrderedDict()
|
|
config_iter = iter(self.lora_config_dict.items())
|
|
lora_A, lora_B, layer_prefix = None, None, None
|
|
for k, v in state_dict_lora.items():
|
|
if k.rpartition('.')[-1] == 'lora_A':
|
|
lora_A = v
|
|
layer_prefix = k.rpartition('.')[0]
|
|
elif k.rpartition('.')[-1] == 'lora_B':
|
|
assert layer_prefix == k.rpartition('.')[0], "unmatched (lora_A, lora_B) pair"
|
|
layer_prefix_2, config = next(config_iter)
|
|
assert layer_prefix_2 == layer_prefix, "unmatched (state_dict, config_dict) pair"
|
|
lora_B = v
|
|
weight_data_increase = self._compute(lora_A, lora_B, config)
|
|
state_dict_increase[layer_prefix + '.weight'] = weight_data_increase
|
|
lora_A, lora_B, layer_prefix = None, None, None
|
|
else:
|
|
raise ValueError('unexpected key')
|
|
return state_dict_increase
|
|
|
|
def _compute(self, lora_A, lora_B, config=LoRAConfig()):
|
|
def T(w):
|
|
return w.T if config.fan_in_fan_out else w
|
|
if config.r > 0:
|
|
scaling = config.lora_alpha / config.r
|
|
weight_data_increase = T(lora_B @ lora_A) * scaling
|
|
return weight_data_increase
|
|
return 0
|
|
|
|
def load_state_dict_increase(self, model: nn.Module, state_dict_increase: Dict[str, Any]):
|
|
'''
|
|
The final reconstruction step
|
|
'''
|
|
# naive approach
|
|
model.load_state_dict({k: v + model.state_dict()[k] for k, v in state_dict_increase.items()}, strict=False)
|
|
|
|
@staticmethod
|
|
def filter_state_dict_lora(state_dict: Dict[str, Any], keep_non_lora=False):
|
|
'''
|
|
if keep_non_lora, also return non_lora state_dict
|
|
'''
|
|
state_dict_lora = OrderedDict()
|
|
state_dict_non_lora = OrderedDict()
|
|
for k, v in state_dict.items():
|
|
if 'lora_A' in k or 'lora_B' in k:
|
|
state_dict_lora[k] = v
|
|
elif keep_non_lora:
|
|
state_dict_non_lora[k] = v
|
|
if keep_non_lora:
|
|
return state_dict_lora, state_dict_non_lora
|
|
else:
|
|
return state_dict_lora, None
|
|
|
|
@staticmethod
|
|
def extract_lora_config(model: nn.Module) -> Dict[str, LoRAConfig]:
|
|
'''
|
|
extract LoraLinear model.
|
|
return OrderedDict(): name -> LoRAConfig
|
|
'''
|
|
lora_config_dict = OrderedDict()
|
|
|
|
for name, child in model.named_modules():
|
|
if isinstance(child, LoraLinear):
|
|
lora_config_dict[name] = LoRAConfig(r=child.r,
|
|
lora_alpha=child.lora_alpha,
|
|
lora_dropout=child.lora_dropout,
|
|
fan_in_fan_out=child.fan_in_fan_out)
|
|
|
|
return lora_config_dict
|