ColossalAI/applications/Chat/coati/experience_maker/naive.py

58 lines
2.4 KiB
Python

import torch
import torch.nn.functional as F
from coati.models.generation import generate
from coati.models.utils import calc_action_log_probs, compute_reward
from .base import Experience, ExperienceMaker
class NaiveExperienceMaker(ExperienceMaker):
"""
Naive experience maker.
"""
@torch.no_grad()
def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience:
self.actor.eval()
self.critic.eval()
self.initial_model.eval()
self.reward_model.eval()
# generate sequences
sequences = generate(self.actor, input_ids, **generate_kwargs)
# calculate auxiliary tensors
attention_mask = None
pad_token_id = generate_kwargs.get('pad_token_id', None)
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id)\
.to(dtype=torch.long, device=sequences.device)
input_len = input_ids.size(1)
eos_token_id = generate_kwargs.get('eos_token_id', None)
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
action_mask = action_mask[:, -(sequences.size(1) - input_len):]
num_actions = action_mask.size(1)
actor_output = self.actor(sequences, attention_mask)
action_log_probs = calc_action_log_probs(actor_output, sequences, num_actions)
base_model_output = self.initial_model(sequences, attention_mask)
base_action_log_probs = calc_action_log_probs(base_model_output, sequences, num_actions)
value = self.critic(sequences, action_mask, attention_mask)
r = self.reward_model(sequences, attention_mask)
reward = compute_reward(r, self.kl_coef, action_log_probs, base_action_log_probs, action_mask=action_mask)
advantage = reward - value
# TODO(ver217): maybe normalize adv
if advantage.ndim == 1:
advantage = advantage.unsqueeze(-1)
return Experience(sequences, action_log_probs, value, reward, advantage, attention_mask, action_mask)