ColossalAI/colossalai/gemini/chunk/utils.py

65 lines
2.0 KiB
Python

from time import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.gemini.chunk import ChunkManager
from colossalai.gemini.chunk.search_utils import search_chunk_configuration
from colossalai.utils import is_ddp_ignored
def safe_div(a, b):
if a == 0:
return 0
return a / b
def init_chunk_manager(model: nn.Module,
init_device: Optional[torch.device] = None,
hidden_dim: Optional[int] = None,
search_range_mb: Optional[float] = None,
min_chunk_size_mb: Optional[float] = None,
filter_exlarge_params: Optional[bool] = None) -> ChunkManager:
kwargs_dict = dict()
if hidden_dim:
search_interval_byte = hidden_dim
else:
search_interval_byte = 1024 # 1kb
kwargs_dict["search_interval_byte"] = search_interval_byte
if search_range_mb:
kwargs_dict["search_range_mb"] = search_range_mb
if min_chunk_size_mb:
kwargs_dict["min_chunk_size_mb"] = min_chunk_size_mb
if filter_exlarge_params:
kwargs_dict["filter_exlarge_params"] = filter_exlarge_params
params_sizes = [p.numel() for p in model.parameters() if not is_ddp_ignored(p)]
total_size = sum(params_sizes) / 1024**2
dist.barrier()
begin = time()
config_dict, wasted_size = search_chunk_configuration(model, **kwargs_dict)
dist.barrier()
end = time()
span_s = end - begin
wasted_size /= 1024**2
if dist.get_rank() == 0:
print("searching chunk configuration is completed in {:.2f} s.\n".format(span_s),
"used number: {:.2f} MB, wasted number: {:.2f} MB\n".format(total_size, wasted_size),
"total wasted percentage is {:.2f}%".format(100 * safe_div(wasted_size, total_size + wasted_size)),
sep='',
flush=True)
dist.barrier()
chunk_manager = ChunkManager(config_dict, init_device)
return chunk_manager