mirror of https://github.com/hpcaitech/ColossalAI
329 lines
14 KiB
Python
329 lines
14 KiB
Python
import copy
|
|
import os
|
|
from typing import Callable, Optional, Union
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
|
|
from colossalai.interface import pretrained as pretrained_interface
|
|
|
|
|
|
class PretrainedManager:
|
|
old_from_pretrained: Optional[Callable] = None
|
|
|
|
@staticmethod
|
|
def inject() -> None:
|
|
try:
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
except ImportError:
|
|
return
|
|
# recover bound method to plain function
|
|
PretrainedManager.old_from_pretrained = PreTrainedModel.from_pretrained.__func__
|
|
PreTrainedModel.from_pretrained = new_from_pretrained
|
|
|
|
@staticmethod
|
|
def recover() -> None:
|
|
try:
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
except ImportError:
|
|
return
|
|
# convert plain function to class method
|
|
PreTrainedModel.from_pretrained = classmethod(PretrainedManager.old_from_pretrained)
|
|
PretrainedManager.old_from_pretrained = None
|
|
|
|
|
|
@classmethod
|
|
def new_from_pretrained(
|
|
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs
|
|
) -> Module:
|
|
from transformers import GenerationConfig
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.modeling_utils import (
|
|
ContextManagers,
|
|
_add_variant,
|
|
cached_file,
|
|
download_url,
|
|
has_file,
|
|
is_offline_mode,
|
|
is_remote_url,
|
|
no_init_weights,
|
|
)
|
|
from transformers.utils import (
|
|
SAFE_WEIGHTS_INDEX_NAME,
|
|
SAFE_WEIGHTS_NAME,
|
|
WEIGHTS_INDEX_NAME,
|
|
WEIGHTS_NAME,
|
|
is_safetensors_available,
|
|
logging,
|
|
)
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
config = kwargs.pop("config", None)
|
|
cache_dir = kwargs.pop("cache_dir", None)
|
|
force_download = kwargs.pop("force_download", False)
|
|
proxies = kwargs.pop("proxies", None)
|
|
local_files_only = kwargs.pop("local_files_only", False)
|
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
|
revision = kwargs.pop("revision", None)
|
|
_ = kwargs.pop("mirror", None)
|
|
from_pipeline = kwargs.pop("_from_pipeline", None)
|
|
from_auto_class = kwargs.pop("_from_auto", False)
|
|
_fast_init = kwargs.pop("_fast_init", True)
|
|
torch_dtype = kwargs.pop("torch_dtype", None)
|
|
subfolder = kwargs.pop("subfolder", "")
|
|
commit_hash = kwargs.pop("_commit_hash", None)
|
|
variant = kwargs.pop("variant", None)
|
|
|
|
kwargs.pop("state_dict", None)
|
|
kwargs.pop("from_tf", False)
|
|
kwargs.pop("from_flax", False)
|
|
kwargs.pop("output_loading_info", False)
|
|
kwargs.pop("trust_remote_code", None)
|
|
kwargs.pop("low_cpu_mem_usage", None)
|
|
kwargs.pop("device_map", None)
|
|
kwargs.pop("max_memory", None)
|
|
kwargs.pop("offload_folder", None)
|
|
kwargs.pop("offload_state_dict", False)
|
|
kwargs.pop("load_in_8bit", False)
|
|
kwargs.pop("load_in_4bit", False)
|
|
kwargs.pop("quantization_config", None)
|
|
kwargs.pop("adapter_kwargs", {})
|
|
kwargs.pop("adapter_name", "default")
|
|
kwargs.pop("use_flash_attention_2", False)
|
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
|
|
|
|
if len(kwargs) > 0:
|
|
logger.warning(f"Below kwargs may be ignored: {list(kwargs.keys())}")
|
|
|
|
from_pt = True
|
|
|
|
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
|
|
if from_pipeline is not None:
|
|
user_agent["using_pipeline"] = from_pipeline
|
|
|
|
if is_offline_mode() and not local_files_only:
|
|
logger.info("Offline mode: forcing local_files_only=True")
|
|
local_files_only = True
|
|
|
|
# Load config if we don't provide a configuration
|
|
if not isinstance(config, PretrainedConfig):
|
|
config_path = config if config is not None else pretrained_model_name_or_path
|
|
config, model_kwargs = cls.config_class.from_pretrained(
|
|
config_path,
|
|
cache_dir=cache_dir,
|
|
return_unused_kwargs=True,
|
|
force_download=force_download,
|
|
proxies=proxies,
|
|
local_files_only=local_files_only,
|
|
use_auth_token=use_auth_token,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
_from_auto=from_auto_class,
|
|
_from_pipeline=from_pipeline,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
config = copy.deepcopy(config)
|
|
kwarg_attn_imp = kwargs.pop("attn_implementation", None)
|
|
if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
|
|
config._attn_implementation = kwarg_attn_imp
|
|
model_kwargs = kwargs
|
|
|
|
if commit_hash is None:
|
|
commit_hash = getattr(config, "_commit_hash", None)
|
|
|
|
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
|
# index of the files.
|
|
|
|
if pretrained_model_name_or_path is not None:
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
|
is_local = os.path.isdir(pretrained_model_name_or_path)
|
|
if is_local:
|
|
if use_safetensors is not False and os.path.isfile(
|
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
|
|
):
|
|
# Load from a safetensors checkpoint
|
|
archive_file = os.path.join(
|
|
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
|
|
)
|
|
elif use_safetensors is not False and os.path.isfile(
|
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant))
|
|
):
|
|
# Load from a sharded safetensors checkpoint
|
|
archive_file = os.path.join(
|
|
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
|
|
)
|
|
elif os.path.isfile(
|
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
|
|
):
|
|
# Load from a PyTorch checkpoint
|
|
archive_file = os.path.join(
|
|
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
|
|
)
|
|
elif os.path.isfile(
|
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
|
|
):
|
|
# Load from a sharded PyTorch checkpoint
|
|
archive_file = os.path.join(
|
|
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
|
|
)
|
|
else:
|
|
raise EnvironmentError(
|
|
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
|
|
f" {pretrained_model_name_or_path}."
|
|
)
|
|
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
|
|
archive_file = pretrained_model_name_or_path
|
|
is_local = True
|
|
elif is_remote_url(pretrained_model_name_or_path):
|
|
filename = pretrained_model_name_or_path
|
|
resolved_archive_file = download_url(pretrained_model_name_or_path)
|
|
else:
|
|
# set correct filename
|
|
if use_safetensors is not False:
|
|
filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
|
|
else:
|
|
filename = _add_variant(WEIGHTS_NAME, variant)
|
|
|
|
try:
|
|
# Load from URL or cache if already cached
|
|
cached_file_kwargs = {
|
|
"cache_dir": cache_dir,
|
|
"force_download": force_download,
|
|
"proxies": proxies,
|
|
"local_files_only": local_files_only,
|
|
"use_auth_token": use_auth_token,
|
|
"user_agent": user_agent,
|
|
"revision": revision,
|
|
"subfolder": subfolder,
|
|
"_raise_exceptions_for_missing_entries": False,
|
|
"_commit_hash": commit_hash,
|
|
}
|
|
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
|
|
|
|
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
|
|
# result when internet is up, the repo and revision exist, but the file does not.
|
|
if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
|
|
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
|
resolved_archive_file = cached_file(
|
|
pretrained_model_name_or_path,
|
|
_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
|
|
**cached_file_kwargs,
|
|
)
|
|
if resolved_archive_file is not None:
|
|
pass
|
|
elif use_safetensors:
|
|
raise EnvironmentError(
|
|
f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} and thus cannot be loaded with `safetensors`. Please make sure that the model has been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
|
|
)
|
|
else:
|
|
# This repo has no safetensors file of any kind, we switch to PyTorch.
|
|
filename = _add_variant(WEIGHTS_NAME, variant)
|
|
resolved_archive_file = cached_file(
|
|
pretrained_model_name_or_path, filename, **cached_file_kwargs
|
|
)
|
|
if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
|
|
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
|
resolved_archive_file = cached_file(
|
|
pretrained_model_name_or_path,
|
|
_add_variant(WEIGHTS_INDEX_NAME, variant),
|
|
**cached_file_kwargs,
|
|
)
|
|
if resolved_archive_file is not None:
|
|
pass
|
|
if resolved_archive_file is None:
|
|
# Otherwise, maybe there is a TF or Flax model file. We try those to give a helpful error
|
|
# message.
|
|
has_file_kwargs = {
|
|
"revision": revision,
|
|
"proxies": proxies,
|
|
"use_auth_token": use_auth_token,
|
|
}
|
|
if variant is not None and has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
|
|
raise EnvironmentError(
|
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
|
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
|
|
f" {variant}. Use `variant=None` to load this model from those weights."
|
|
)
|
|
else:
|
|
raise EnvironmentError(
|
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
|
f" {_add_variant(WEIGHTS_NAME, variant)}"
|
|
)
|
|
except EnvironmentError:
|
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
|
# to the original exception.
|
|
raise
|
|
except Exception:
|
|
# For any other exception, we throw a generic error.
|
|
raise EnvironmentError(
|
|
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
|
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
|
f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)}."
|
|
)
|
|
|
|
if is_local:
|
|
logger.info(f"loading weights file {archive_file}")
|
|
resolved_archive_file = archive_file
|
|
else:
|
|
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
|
|
else:
|
|
resolved_archive_file = None
|
|
|
|
if from_pt:
|
|
# set dtype to instantiate the model under:
|
|
# 1. If torch_dtype is not None, we use that dtype
|
|
dtype_orig = None
|
|
|
|
if torch_dtype is not None:
|
|
if not isinstance(torch_dtype, torch.dtype):
|
|
raise ValueError(f"`torch_dtype` can be either `torch.dtype` or `None`, but received {torch_dtype}")
|
|
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
|
|
|
|
config.name_or_path = pretrained_model_name_or_path
|
|
|
|
# Instantiate model.
|
|
init_contexts = [no_init_weights(_enable=_fast_init)]
|
|
|
|
with ContextManagers(init_contexts):
|
|
model = cls(config, *model_args, **model_kwargs)
|
|
|
|
if from_pt:
|
|
# restore default dtype
|
|
if dtype_orig is not None:
|
|
torch.set_default_dtype(dtype_orig)
|
|
|
|
# make sure token embedding weights are still tied if needed
|
|
model.tie_weights()
|
|
|
|
# Set model in evaluation mode to deactivate DropOut modules by default
|
|
model.eval()
|
|
|
|
# If it is a model with generation capabilities, attempt to load the generation config
|
|
if model.can_generate():
|
|
try:
|
|
model.generation_config = GenerationConfig.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
cache_dir=cache_dir,
|
|
force_download=force_download,
|
|
proxies=proxies,
|
|
local_files_only=local_files_only,
|
|
use_auth_token=use_auth_token,
|
|
revision=revision,
|
|
subfolder=subfolder,
|
|
_from_auto=from_auto_class,
|
|
_from_pipeline=from_pipeline,
|
|
**kwargs,
|
|
)
|
|
except (OSError, TypeError):
|
|
logger.info("Generation config file not found, using a generation config created from the model config.")
|
|
|
|
# set pretrained path
|
|
if resolved_archive_file:
|
|
pretrained_interface.set_pretrained_path(model, resolved_archive_file)
|
|
|
|
return model
|