ColossalAI/colossalai/gemini/memory_tracer/model_data_memtracer.py

110 lines
3.4 KiB
Python

from colossalai.context.singleton_meta import SingletonMeta
import torch
from typing import Tuple, Optional
from colossalai.logging import DistributedLogger
def colo_model_optimizer_usage(optim) -> Tuple[int, int]:
"""Trace the optimizer memory usage
Args:
optim (ShardedOptimV2): an instance of ShardedOptimver
Returns:
Tuple[int, int]: cuda/cpu memory usage in Byte
"""
if optim is None:
return 0, 0
assert hasattr(optim, 'get_memory_usage'), f"{type(optim)} has no attr get_memory_usage()"
return optim.get_memory_usage()
def colo_model_mem_usage(model: torch.nn.Module) -> Tuple[int, int]:
"""
Trace the model memory usage.
Args:
model (torch.nn.Module): a torch model
Returns:
Tuple[int, int]: cuda memory usage in Byte, cpu memory usage in Byte
"""
if model is None:
return 0, 0
def _get_tensor_mem_use(t: Optional[torch.Tensor]):
if t is None:
return 0, 0
assert isinstance(t, torch.Tensor)
_cpu_mem_usage, _cuda_mem_usage = 0, 0
if t.device.type == 'cpu':
_cpu_mem_usage += t.numel() * t.element_size()
elif t.device.type == 'cuda':
_cuda_mem_usage += t.numel() * t.element_size()
return _cuda_mem_usage, _cpu_mem_usage
cuda_mem_usage = 0
cpu_mem_usage = 0
for param in model.parameters():
if hasattr(param, 'colo_attr'):
t_cuda, t_cpu = param.colo_attr.get_memory_usage()
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
else:
t_cuda, t_cpu = _get_tensor_mem_use(param.data)
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
t_cuda, t_cpu = _get_tensor_mem_use(param.grad)
cuda_mem_usage += t_cuda
cpu_mem_usage += t_cpu
return cuda_mem_usage, cpu_mem_usage
class ModelDataTracer(metaclass=SingletonMeta):
"""
A tracer singleton to trace model data usage during runtime.
You have to register a model on the singleton first.
"""
def __init__(self) -> None:
self._logger = DistributedLogger("ModelDataTracer")
self._model = None
self._opitimizer = None
def _get_mem_usage(self) -> Tuple[int, int]:
"""
get the memory usage of the model registered.
Returns:
Tuple[int, int]: cuda, cpu mem usage
"""
cuda_use_opt, cpu_use_opt = colo_model_optimizer_usage(self._opitimizer)
cuda_use_model, cpu_use_model = colo_model_mem_usage(self._model)
return cuda_use_opt + cuda_use_model, cpu_use_opt + cpu_use_model
def register_model(self, model) -> None:
if self._model is not None:
self._logger.warning("ModelDataTracer has already registered a model")
self._model = model
def register_optimizer(self, optimizer) -> None:
if self._opitimizer is not None:
self._logger.warning("ModelDataTracer has already registered an optimizer")
self._opitimizer = optimizer
@property
def cpu_usage(self):
_, cpu_usage = self._get_mem_usage()
return cpu_usage
@property
def cuda_usage(self):
cuda_usage, _ = self._get_mem_usage()
return cuda_usage
@property
def both_mem_usage(self):
return self._get_mem_usage()
GLOBAL_MODEL_DATA_TRACER = ModelDataTracer()