ColossalAI/examples/inference/benchmark_ops/benchmark_rotary_embdding_u...

91 lines
3.2 KiB
Python

import torch
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2, mock_alloc_single_token
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[2**i for i in range(4, 11)],
line_arg="provider",
line_vals=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
line_names=["no_fused_rotary_emb_func", "fused_triton_rotary_emb_func"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"rotary_emb-batch-{BATCH}",
args={"num_kv_heads": 16},
)
]
@triton.testing.perf_report(configs)
def benchmark_rotary_emb(
provider: str,
num_tokens: int,
num_kv_heads: int,
):
BATCH_SIZE = 4
SEQ_LEN = num_tokens // BATCH_SIZE
max_num_blocks_per_seq = 8
block_size = 64
warmup = 10
rep = 100
head_dim = 4096
dtype = torch.float16
q_shape = (num_tokens, num_kv_heads, head_dim)
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda")
k_shape = (num_tokens, num_kv_heads, head_dim)
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
v = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda")
cos_shape = (num_tokens, head_dim // 2)
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda")
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
block_tables = mock_alloc_block_table_and_kvcache_v2(
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
)
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
new_q = torch.randn_like(new_k)
new_v = torch.randn_like(new_k)
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
kv_seq_lengths = past_kv_seq_lengths + 1
block_tables = block_tables.to(device="cuda")
if provider == "no_fused_rotary_emb_func":
fn = lambda: [
rotary_embedding(new_q, new_k, cos, sin),
copy_kv_to_blocked_cache(
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
),
]
elif provider == "fused_triton_rotary_emb_func":
fn = lambda: decoding_fused_rotary_embedding(
new_q, new_k, new_k, cos, sin, k_cache, k_cache, block_tables, kv_seq_lengths
)
else:
raise ValueError("Undefined provider")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_rotary_emb.run(save_path=".", print_data=True)