ColossalAI/examples/tutorial/large_batch_optimizer/train.py

105 lines
3.0 KiB
Python

import torch
import torch.nn as nn
from torchvision.models import resnet18
from tqdm import tqdm
import colossalai
from colossalai.legacy.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import Lamb, Lars
class DummyDataloader:
def __init__(self, length, batch_size):
self.length = length
self.batch_size = batch_size
def generate(self):
data = torch.rand(self.batch_size, 3, 224, 224)
label = torch.randint(low=0, high=10, size=(self.batch_size,))
return data, label
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
def main():
# initialize distributed setting
parser = colossalai.get_default_parser()
parser.add_argument(
"--optimizer", choices=["lars", "lamb"], help="Choose your large-batch optimizer", required=True
)
args = parser.parse_args()
# launch from torch
colossalai.launch_from_torch(config=args.config)
# get logger
logger = get_dist_logger()
logger.info("initialized distributed environment", ranks=[0])
# create synthetic dataloaders
train_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
test_dataloader = DummyDataloader(length=5, batch_size=gpc.config.BATCH_SIZE)
# build model
model = resnet18(num_classes=gpc.config.NUM_CLASSES)
# create loss function
criterion = nn.CrossEntropyLoss()
# create optimizer
if args.optimizer == "lars":
optim_cls = Lars
elif args.optimizer == "lamb":
optim_cls = Lamb
optimizer = optim_cls(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=gpc.config.WARMUP_EPOCHS
)
# initialize
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
)
logger.info("Engine is built", ranks=[0])
for epoch in range(gpc.config.NUM_EPOCHS):
# training
engine.train()
data_iter = iter(train_dataloader)
if gpc.get_global_rank() == 0:
description = "Epoch {} / {}".format(epoch, gpc.config.NUM_EPOCHS)
progress = tqdm(range(len(train_dataloader)), desc=description)
else:
progress = range(len(train_dataloader))
for _ in progress:
engine.zero_grad()
engine.execute_schedule(data_iter, return_output_label=False)
engine.step()
lr_scheduler.step()
if __name__ == "__main__":
main()