mirror of https://github.com/hpcaitech/ColossalAI
224 lines
8.8 KiB
Python
224 lines
8.8 KiB
Python
import argparse
|
|
import resource
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from attn import SUPPORT_FLASH, replace_xformers
|
|
from data_utils import RandomDataset
|
|
from model_utils import format_numel_str, get_model_numel
|
|
from performance_evaluator import PerformanceEvaluator
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision
|
|
from tqdm import tqdm
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchFSDPPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.utils import get_current_device
|
|
|
|
# ==============================
|
|
# Constants
|
|
# ==============================
|
|
|
|
MODEL_CONFIGS = {
|
|
"7b": LlamaConfig(max_position_embeddings=4096),
|
|
"13b": LlamaConfig(
|
|
hidden_size=5120,
|
|
intermediate_size=13824,
|
|
num_hidden_layers=40,
|
|
num_attention_heads=40,
|
|
max_position_embeddings=4096,
|
|
),
|
|
"70b": LlamaConfig(
|
|
hidden_size=8192,
|
|
intermediate_size=28672,
|
|
num_hidden_layers=80,
|
|
num_attention_heads=64,
|
|
max_position_embeddings=4096,
|
|
num_key_value_heads=8,
|
|
),
|
|
}
|
|
|
|
|
|
def main():
|
|
# ==============================
|
|
# Parse Arguments
|
|
# ==============================
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-c", "--config", type=str, default="7b", help="Model configuration")
|
|
parser.add_argument(
|
|
"-p",
|
|
"--plugin",
|
|
choices=["gemini", "gemini_auto", "fsdp", "fsdp_cpu", "3d", "3d_cpu"],
|
|
default="gemini",
|
|
help="Choose which plugin to use",
|
|
)
|
|
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size")
|
|
parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run")
|
|
parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore")
|
|
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
|
|
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
|
|
parser.add_argument(
|
|
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto"
|
|
)
|
|
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb")
|
|
parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers")
|
|
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini")
|
|
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
|
|
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
|
|
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
|
|
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
|
|
parser.add_argument("--mbs", type=int, default=1)
|
|
parser.add_argument("--zero", type=int, default=0)
|
|
args = parser.parse_args()
|
|
|
|
colossalai.launch_from_torch({})
|
|
coordinator = DistCoordinator()
|
|
|
|
def empty_init():
|
|
pass
|
|
|
|
# ==============================
|
|
# Initialize Booster
|
|
# ==============================
|
|
use_empty_init = True
|
|
if args.plugin == "gemini":
|
|
plugin = GeminiPlugin(
|
|
precision="bf16",
|
|
shard_param_frac=args.shard_param_frac,
|
|
offload_optim_frac=args.offload_optim_frac,
|
|
offload_param_frac=args.offload_param_frac,
|
|
)
|
|
elif args.plugin == "gemini_auto":
|
|
plugin = GeminiPlugin(placement_policy="auto", precision="bf16", warmup_non_model_data_ratio=args.warmup_ratio)
|
|
elif args.plugin == "fsdp":
|
|
if use_empty_init:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
param_init_fn=empty_init(),
|
|
)
|
|
else:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
)
|
|
)
|
|
elif args.plugin == "fsdp_cpu":
|
|
if use_empty_init:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
cpu_offload=CPUOffload(offload_params=True),
|
|
param_init_fn=empty_init(),
|
|
)
|
|
else:
|
|
plugin = TorchFSDPPlugin(
|
|
mixed_precision=MixedPrecision(
|
|
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
|
|
),
|
|
cpu_offload=CPUOffload(offload_params=True),
|
|
)
|
|
elif args.plugin == "3d":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=args.pp,
|
|
zero_stage=args.zero,
|
|
enable_fused_normalization=True,
|
|
num_microbatches=args.mbs,
|
|
precision="bf16",
|
|
)
|
|
elif args.plugin == "3d_cpu":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=args.pp,
|
|
zero_stage=args.zero,
|
|
cpu_offload=True,
|
|
enable_fused_normalization=True,
|
|
num_microbatches=args.mbs,
|
|
initial_scale=2**8,
|
|
precision="bf16",
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown plugin {args.plugin}")
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
# ==============================
|
|
# Initialize Dataset and Dataloader
|
|
# ==============================
|
|
dp_size = plugin.dp_size if isinstance(plugin, HybridParallelPlugin) else coordinator.world_size
|
|
|
|
config = MODEL_CONFIGS[args.config]
|
|
dataset = RandomDataset(
|
|
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
|
|
)
|
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
|
|
|
|
# ==============================
|
|
# Initialize Model and Optimizer
|
|
# ==============================
|
|
init_ctx = (
|
|
LazyInitContext(default_device=get_current_device())
|
|
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
|
|
else nullcontext()
|
|
)
|
|
|
|
with init_ctx:
|
|
model = LlamaForCausalLM(config)
|
|
|
|
if args.grad_checkpoint:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
if args.xformers:
|
|
assert SUPPORT_FLASH, "Use flash attention while xfomers is not installed"
|
|
replace_xformers(model)
|
|
|
|
model_numel = get_model_numel(model)
|
|
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
|
|
performance_evaluator = PerformanceEvaluator(
|
|
model_numel, args.grad_checkpoint, args.ignore_steps, dp_world_size=dp_size
|
|
)
|
|
|
|
optimizer = HybridAdam(model.parameters())
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
|
|
torch.set_default_dtype(torch.float)
|
|
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
coordinator.print_on_master(
|
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
|
|
)
|
|
|
|
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
|
|
data_iter = iter(dataloader)
|
|
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()):
|
|
performance_evaluator.on_step_start(step)
|
|
booster.execute_pipeline(
|
|
data_iter, model, criterion=lambda outputs, inputs: outputs[0], optimizer=optimizer, return_loss=False
|
|
)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length))
|
|
else:
|
|
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())):
|
|
performance_evaluator.on_step_start(step)
|
|
outputs = model(**batch)
|
|
loss = outputs[0]
|
|
booster.backward(loss, optimizer)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
performance_evaluator.on_step_end(**batch)
|
|
|
|
performance_evaluator.on_fit_end()
|
|
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|