ColossalAI/examples/community/roberta/pretraining/arguments.py

87 lines
4.1 KiB
Python

import argparse
__all__ = ["parse_args"]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--distplan",
type=str,
default="CAI_Gemini",
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default="cpu",
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
action="store_true",
help="Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument("--lr", type=float, required=True, help="initial learning rate")
parser.add_argument("--epoch", type=int, required=True, help="number of epoch")
parser.add_argument("--data_path_prefix", type=str, required=True, help="location of the train data corpus")
parser.add_argument(
"--eval_data_path_prefix", type=str, required=True, help="location of the evaluation data corpus"
)
parser.add_argument("--tokenizer_path", type=str, required=True, help="location of the tokenizer")
parser.add_argument("--max_seq_length", type=int, default=512, help="sequence length")
parser.add_argument(
"--refresh_bucket_size",
type=int,
default=1,
help="This param makes sure that a certain task is repeated for this time steps to \
optimize on the back propagation speed with APEX's DistributedDataParallel",
)
parser.add_argument(
"--max_predictions_per_seq",
"--max_pred",
default=80,
type=int,
help="The maximum number of masked tokens in a sequence to be predicted.",
)
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="accumulation_steps")
parser.add_argument("--train_micro_batch_size_per_gpu", default=2, type=int, required=True, help="train batch size")
parser.add_argument("--eval_micro_batch_size_per_gpu", default=2, type=int, required=True, help="eval batch size")
parser.add_argument("--num_workers", default=8, type=int, help="")
parser.add_argument("--async_worker", action="store_true", help="")
parser.add_argument("--bert_config", required=True, type=str, help="location of config.json")
parser.add_argument("--wandb", action="store_true", help="use wandb to watch model")
parser.add_argument("--wandb_project_name", default="roberta", help="wandb project name")
parser.add_argument("--log_interval", default=100, type=int, help="report interval")
parser.add_argument("--log_path", type=str, required=True, help="log file which records train step")
parser.add_argument("--tensorboard_path", type=str, required=True, help="location of tensorboard file")
parser.add_argument(
"--colossal_config", type=str, required=True, help="colossal config, which contains zero config and so on"
)
parser.add_argument(
"--ckpt_path", type=str, required=True, help="location of saving checkpoint, which contains model and optimizer"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--vscode_debug", action="store_true", help="use vscode to debug")
parser.add_argument("--load_pretrain_model", default="", type=str, help="location of model's checkpoint")
parser.add_argument(
"--load_optimizer_lr",
default="",
type=str,
help="location of checkpoint, which contains optimizer, learning rate, epoch, shard and global_step",
)
parser.add_argument("--resume_train", action="store_true", help="whether resume training from a early checkpoint")
parser.add_argument("--mlm", default="bert", type=str, help="model type, bert or deberta")
parser.add_argument("--checkpoint_activations", action="store_true", help="whether to use gradient checkpointing")
args = parser.parse_args()
return args