ColossalAI/colossalai/legacy/builder/builder.py

80 lines
3.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import inspect
from colossalai.legacy.registry import *
def build_from_config(module, config: dict):
"""Returns an object of :class:`module` constructed from `config`.
Args:
module: A python or user-defined class
config: A python dict containing information used in the construction of the return object
Returns: An ``object`` of interest
Raises:
AssertionError: Raises an AssertionError if `module` is not a class
"""
assert inspect.isclass(module), "module must be a class"
return module(**config)
def build_from_registry(config, registry: Registry):
r"""Returns an object constructed from `config`, the type of the object
is specified by `registry`.
Note:
the `config` is used to construct the return object such as `LAYERS`, `OPTIMIZERS`
and other support types in `registry`. The `config` should contain
all required parameters of corresponding object. The details of support
types in `registry` and the `mod_type` in `config` could be found in
`registry <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/registry/__init__.py>`_.
Args:
config (dict or :class:`colossalai.context.colossalai.context.Config`): information
used in the construction of the return object.
registry (:class:`Registry`): A registry specifying the type of the return object
Returns:
A Python object specified by `registry`.
Raises:
Exception: Raises an Exception if an error occurred when building from registry.
"""
config_ = config.copy() # keep the original config untouched
assert isinstance(registry, Registry), f"Expected type Registry but got {type(registry)}"
mod_type = config_.pop("type")
assert registry.has(mod_type), f"{mod_type} is not found in registry {registry.name}"
try:
obj = registry.get_module(mod_type)(**config_)
except Exception as e:
print(f"An error occurred when building {mod_type} from registry {registry.name}", flush=True)
raise e
return obj
def build_gradient_handler(config, model, optimizer):
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
`model` and `optimizer`.
Args:
config (dict or :class:`colossalai.context.Config`): A python dict or
a :class:`colossalai.context.Config` object containing information
used in the construction of the ``GRADIENT_HANDLER``.
model (:class:`nn.Module`): A model containing parameters for the gradient handler
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the gradient handler
Returns:
An object of :class:`colossalai.legacy.engine.BaseGradientHandler`
"""
config_ = config.copy()
config_["model"] = model
config_["optimizer"] = optimizer
return build_from_registry(config_, GRADIENT_HANDLER)